Existence of Weak Solutions to the Equations of Non-Stationary Motion of Non-Newtonian Fluids with Shear Rate Dependent Viscosity

被引:0
|
作者
Jörg Wolf
机构
[1] Humboldt-Universität zu Berlin,
关键词
76D05; 35D05; 54B15; 34A34; Non-Newtonian fluids; Dirichlet boundary initial value problem; weak solutions; local pressure method;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we prove the existence of weak solutions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ u:Q \to \mathbb{R}^{n}$$ \end{document} to the equations of non-stationary motion of an incompressible fluid with shear rate dependent viscosity in a cylinder Q = Ω × (0,T), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Omega \subset \mathbb{R}^{n} $$ \end{document} denotes an open set. For the power-low model with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ q > 2\frac{{n + 1}}{{n + 2}}$$ \end{document} we are able to construct a weak solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ u\in L^q(0, T; W_0^{1,q}(\Omega)^n)\cap C_w([0,T];L^2(\Omega)^n)$$ \end{document} with ∇ · u = 0.
引用
收藏
页码:104 / 138
页数:34
相关论文
共 50 条