Investigation on the mechanical properties of 3D printed hybrid continuous fiber-filled composite considering influence of interfaces

被引:0
|
作者
Shixian Li
Kui Wang
Wanying Zhu
Yong Peng
Said Ahzi
Francisco Chinesta
机构
[1] Central South University,Key Laboratory of Traffic Safety On Track of Ministry of Education, School of Traffic & Transportation Engineering
[2] University of Strasbourg,ICUBE Laboratory–CNRS
[3] ESI Chair,undefined
[4] PIMM,undefined
[5] Arts Et Métiers Institute of Technology,undefined
关键词
Fused deposition modeling; Hybrid continuous fiber; Hybrid effect model; Stacking sequence; Raster orientation; Prediction model; Interfacial properties;
D O I
暂无
中图分类号
学科分类号
摘要
Fused deposition modeling (FDM) is a promising additive manufacturing technique for fabrication of continuous fiber-reinforced thermoplastic composites. For composite applications, the balance of material properties, including rigidity and toughness, needs to be considered. To overcome the drawbacks induced by single continuous fiber reinforcement, this study focused on the design and characterization of hybrid continuous fiber (continuous carbon and Kevlar fibers)-reinforced polyamide (PA)-based composites, prepared by 3D printing, to achieve comprehensive performance improvements and designable mechanical properties. The deformation and failure behaviors with the effects of hybrid conception, stacking sequences, and raster orientations of composites were investigated. A hybrid effect model was introduced to evaluate the hybrid effect of 3D printed continuous fiber-filled composites. Besides, compared to composites fabricated via conventional methods, a major difference in 3D printed hybrid composites is the performance of interfacial bonding. A roller peeling test was therefore conducted to investigate the interfacial strength of different materials. An analytical approach was developed to predict the tensile modulus of the printed hybrid composites by introducing an interfacial strengthening coefficient into the volume average stiffness model. The combined experimental and predicted results showed that hybrid composite specimens with separated distribution sequence showed a higher tensile modulus compared to hybrid composites with concentrated distribution. The higher tensile properties of the printed hybrid composites with separated continuous fiber-reinforced layers were attributed to the strong interfacial bonding, which delayed crack initiation and propagation.
引用
收藏
页码:3147 / 3158
页数:11
相关论文
共 50 条
  • [41] MECHANICAL PROPERTIES OF 3D PRINTED METALS
    Allameh, Seyed M.
    Harbin, Brianna
    Leininger, Bailey
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 10, 2019,
  • [42] Mechanical properties of 3D printed polymers
    Yahamed, Azem
    Ikonomov, Pavel
    Fleming, Paul D.
    Pekarovicova, Alexandra
    Gustafson, Peter
    Alden, Arz Qwam
    Alrafeek, Saif
    JOURNAL OF PRINT AND MEDIA TECHNOLOGY RESEARCH, 2016, 5 (04): : 273 - 289
  • [43] Influence of continuous ramie yarn content on printability and mechanical properties of in situ impregnation 3D printed biocomposites
    Wang, Kui
    Chang, Yanlu
    Cheng, Ping
    Rao, Yanni
    Peng, Yong
    Ahzi, Said
    POLYMER COMPOSITES, 2025, 46 (04) : 3097 - 3108
  • [44] Mechanical properties of novel stitched 3D hybrid basalt composite
    Zhang Mingxing
    Hu Hong
    PROCEEDINGS OF THE FIBER SOCIETY 2009 SPRING CONFERENCE, VOLS I AND II, 2009, : 8 - 11
  • [45] Investigation of elasticity in the mechanical properties of 3D printed PLA bolt sample
    Alkhalaf, Faisal
    Almughier, Rashed
    Alolaiwy, Asim
    Albadrani, Mohammed
    ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2024, 10 (03) : 1856 - 1868
  • [46] Experimental analysis of 3D printed continuous carbon/glass hybrid fiber reinforced PLA composites: Revealing synergistic mechanical properties and failure mechanisms
    Chen, Yu
    Wei, Xiao
    Mao, Jian
    Zhao, Man
    Liu, Gang
    POLYMER COMPOSITES, 2024, 45 (12) : 10888 - 10897
  • [47] Fabrication strategy for joints in 3D printed continuous fiber reinforced composite lattice structures
    Wang, Yaohui
    Zhang, Guoquan
    Ren, Huilin
    Liu, Guang
    Xiong, Yi
    COMPOSITES COMMUNICATIONS, 2022, 30
  • [48] Effects of cellular crossing paths on mechanical properties of 3D printed continuous fiber reinforced biocomposite honeycomb structures
    Cheng, Ping
    Wang, Kui
    Peng, Yong
    Ahzi, Said
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 178
  • [49] 3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties
    Hedayati, Seyyed Kaveh
    Behravesh, Amir Hossein
    Hasannia, Sadegh
    Saed, Arvin Bagheri
    Akhoundi, Behnam
    POLYMER TESTING, 2020, 83 (83)
  • [50] Bending behavior of 3D printed continuous fiber reinforced composite sandwich cylindrical shells
    Liu, Baosheng
    Jiang, Hong
    Lou, Ruishen
    Liu, Xin
    Wang, Yulin
    Li, Huimin
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024, 43 (15-16) : 926 - 938