Nonsmooth dynamics of a Filippov predator-prey ecological model with antipredator behavior

被引:0
|
作者
Huang, Lidong [1 ]
Qin, Wenjie [1 ]
Chen, Shuai [1 ]
机构
[1] Yunnan Minzu Univ, Dept Math, Kunming 650500, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Nonsmooth Filippov system; Sliding bifurcation; Boundary equilibrium bifurcation; Sliding dynamics; INFECTIOUS-DISEASE MODEL; BIFURCATIONS; SYSTEMS;
D O I
10.1186/s13662-024-03808-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article proposes a class of nonsmooth Filippov pest-predator ecosystems with intermittent control strategies based on the pest's antipredator behavior. aiming to investigate the influence of control strategies and switching thresholds on pest control. First, a comprehensive theoretical analysis of various equilibria within the Filippov system is undertaken, emphasizing the presence and stability of sliding mode dynamics and pseudoequilibrium. Secondly, through numerical simulations, the article discusses boundary-focus, boundary-node, and boundary-saddle bifurcation. Finally, the nonexistence of limit cycles in the Filippov system is theoretically studied. The research indicates that the solution trajectories of the model ultimately stabilize either at the real equilibria or at pseudoequilibrium on the model's switching surface. Moreover, when the model has multiple coexisting real equilibrium and pseudoequilibrium, the pest-control strategy is correlated with the initial density of both the pest and the predator population.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Effects of optimal antipredator behavior of prey on predator-prey dynamics: The role of refuges
    Krivan, V
    [J]. THEORETICAL POPULATION BIOLOGY, 1998, 53 (02) : 131 - 142
  • [2] ANTIPREDATOR BEHAVIOR AND THE POPULATION-DYNAMICS OF SIMPLE PREDATOR-PREY SYSTEMS
    IVES, AR
    DOBSON, AP
    [J]. AMERICAN NATURALIST, 1987, 130 (03): : 431 - 447
  • [3] Predator-prey naivete, antipredator behavior, and the ecology of predator invasions
    Sih, Andrew
    Bolnick, Daniel I.
    Luttbeg, Barney
    Orrock, John L.
    Peacor, Scott D.
    Pintor, Lauren M.
    Preisser, Evan
    Rehage, Jennifer S.
    Vonesh, James R.
    [J]. OIKOS, 2010, 119 (04) : 610 - 621
  • [4] DYNAMICS OF A PREDATOR-PREY MODEL
    Volokitin, E. P.
    Treskov, S. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 87 - 99
  • [5] Dynamics of a predator-prey model
    Sáez, ES
    González-Olivares, E
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1867 - 1878
  • [6] Dynamics of a diffusive predator-prey model with herd behavior
    Li, Yan
    Li, Sanyun
    Zhang, Fengrong
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (01): : 19 - 35
  • [7] Spatial dynamics in a predator-prey model with herd behavior
    Yuan, Sanling
    Xu, Chaoqun
    Zhang, Tonghua
    [J]. CHAOS, 2013, 23 (03)
  • [8] Global dynamics of a filippov predator-prey model with two thresholds for integrated pest management
    Li, Wenxiu
    Chen, Yuming
    Huang, Lihong
    Wang, Jiafu
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 157
  • [9] Bifurcation analysis of a Filippov predator-prey model with two thresholds
    Li, Wenxiu
    [J]. NONLINEAR DYNAMICS, 2024, 112 (11) : 9639 - 9656
  • [10] Sliding bifurcation analysis and global dynamics for a Filippov predator-prey system
    Tan, Xuewen
    Qin, Wenjie
    Liu, Xinzhi
    Yang, Jin
    Jiang, Shaoping
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3948 - 3961