Diabetes prediction model using machine learning techniques

被引:0
|
作者
Sandip Kumar Singh Modak
Vijay Kumar Jha
机构
[1] Sarla Birla University,Department of Computer Science & Engineering
[2] Birla Institute of Technology,Department of Computer Science & Engineering
来源
关键词
Diabetes; Machine learning; SVM; Random Forest and Naïve Bayes;
D O I
暂无
中图分类号
学科分类号
摘要
Diabetes has emerged as a significant global health concern, contributing to various severe complications such as kidney disease, vision loss, and coronary issues. Leveraging machine learning algorithms in medical services has shown promise in accurate disease diagnosis and treatment, thereby alleviating the burden on healthcare professionals. The field of diabetes forecasting has rapidly evolved, offering the potential for early intervention and patient empowerment. To this end, our study presents an innovative diabetes prediction model employing a range of machine learning techniques, including Logistic Regression, SVM, Naïve Bayes, and Random Forest. In addition to these foundational techniques, we harness the power of ensemble learning to further enhance prediction accuracy and robustness. Specifically, we explore ensemble methods such as XGBoost, LightGBM, CatBoost, Adaboost, and Bagging. These techniques amalgamate predictions from multiple base learners, yielding a more precise and resilient final prediction. Our proposed framework is developed and trained using Python, utilizing a real-world dataset sourced from Kaggle. Our methodology is rigorously examined through performance evaluation metrics, including the confusion matrix, sensitivity, and accuracy measurements. Among the ensemble techniques tested, CatBoost emerges as the most effective, boasting an impressive accuracy rate of 95.4% compared to XGBoost's 94.3%. Furthermore, CatBoost's higher AUC-ROC score of 0.99 reinforces its potential superiority over XGBoost, which achieved an AUC-ROC score of 0.98.
引用
下载
收藏
页码:38523 / 38549
页数:26
相关论文
共 50 条
  • [41] Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques
    Li, Jun
    Chen, Qingguang
    Hu, Xiaojuan
    Yuan, Pei
    Cui, Longtao
    Tu, Liping
    Cui, Ji
    Huang, Jingbin
    Jiang, Tao
    Ma, Xuxiang
    Yao, Xinghua
    Zhou, Changle
    Lu, Hao
    Xu, Jiatuo
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 149
  • [42] Analysis of Diabetes mellitus using Machine Learning Techniques
    Bhat, Salliah Shafi
    Selvam, Venkatesan
    Ansari, Gufran Ahmad
    Ansari, Mohd Dilshad
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [43] CLASSIFICATION OF DIABETES USING ENSEMBLE MACHINE LEARNING TECHNIQUES
    Ashisha G.R.
    Mary X.A.
    Raja J.M.
    Scalable Computing, 2024, 25 (04): : 3172 - 3180
  • [44] Stock Market Prediction Using Machine Learning Techniques
    Usmani, Mehak
    Adil, Syed Hasan
    Raza, Kaman
    Ali, Syed Saad Azhar
    2016 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2016, : 322 - 327
  • [45] STOCK PRICE PREDICTION USING MACHINE LEARNING TECHNIQUES
    Sarode, Sumeet
    Tolani, Harsha G.
    Kak, Prateek
    Lifna, C. S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2019), 2019, : 177 - 181
  • [46] Heart Disease Prediction using Machine Learning Techniques
    Shah D.
    Patel S.
    Bharti S.K.
    SN Computer Science, 2020, 1 (6)
  • [47] Intelligent Sales Prediction Using Machine Learning Techniques
    Cheriyan, Sunitha
    Ibrahim, Shaniba
    Mohanan, Saju
    Treesa, Susan
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONICS & COMMUNICATIONS ENGINEERING (ICCECE), 2018, : 53 - 58
  • [48] Cybercrime: Identification and Prediction Using Machine Learning Techniques
    Veena, K.
    Meena, K.
    Kuppusamy, Ramya
    Teekaraman, Yuvaraja
    Angadi, Ravi V.
    Thelkar, Amruth Ramesh
    Computational Intelligence and Neuroscience, 2022, 2022
  • [49] Personal bankruptcy prediction using machine learning techniques
    Brygala, Magdalena
    Korol, Tomasz
    ECONOMICS AND BUSINESS REVIEW, 2024, 10 (02) : 118 - 142
  • [50] Crop Yield Prediction using Machine Learning Techniques
    Medar, Ramesh
    Rajpurohit, Vijay S.
    Shweta
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,