Continuous Wavelet Transform and Uncertainty Principle Related to the Spherical Mean Operator

被引:0
|
作者
Lakhdar T. Rachdi
Fatma Meherzi
机构
[1] Université de Tunis El Manar,Faculté des Sciences de Tunis
来源
关键词
Fourier transform; spherical mean operator; Plancherel formula; admissible wavelet; wavelet transform; uncertainty principle; 43A32; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define and study the continuous wavelet transform associated with the spherical mean operator, we prove Plancherel formula, inversion formula, etc. Next we establish an analogue of Heisenberg’s inequality for wavelet transform. Last, we study wavelet transform on subset of finite measures.
引用
收藏
相关论文
共 50 条
  • [41] Existence of uncertainty minimizers for the continuous wavelet transform
    Halvdansson, Simon
    Olsen, Jan-Fredrik
    Sochen, Nir
    Levie, Ron
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (03) : 1156 - 1172
  • [42] Some uncertainty inequalities for the continuous wavelet transform
    Alhajji, Fatima
    Ghobber, Saifallah
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (02)
  • [43] The uncertainty principle associated with the continuous shearlet transform
    Dahlke, Stephan
    Kutyniok, Gitta
    Maass, Peter
    Sagiv, Chen
    Stark, Hans-Georg
    Teschke, Gerd
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (02) : 157 - 181
  • [44] Uncertainty Principles for the Continuous Dunkl Gabor Transform and the Dunkl Continuous Wavelet Transform
    Mejjaoli, Hatem
    Sraieb, Nadia
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2008, 5 (04) : 443 - 466
  • [45] Uncertainty Principles for the Continuous Dunkl Gabor Transform and the Dunkl Continuous Wavelet Transform
    Hatem Mejjaoli
    Nadia Sraieb
    Mediterranean Journal of Mathematics, 2008, 5 : 443 - 466
  • [46] Quantitative uncertainty principles for the Gabor spherical mean transform
    Chettaoui, Chirine
    Hassini, Amina
    Trimeche, Khalifa
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (7-8) : 380 - 402
  • [47] Spherical Radon transform and related wavelet transforms
    Rubin, B
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (02) : 202 - 215
  • [48] Fast directional continuous spherical wavelet transform algorithms
    McEwen, Jason D.
    Hobson, Michael P.
    Mortlock, Daniel J.
    Lasenby, Anthony N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (02) : 520 - 529
  • [49] Deformed Wavelet Transform and Related Uncertainty Principles
    Ghobber, Saifallah
    Mejjaoli, Hatem
    SYMMETRY-BASEL, 2023, 15 (03):
  • [50] BEST APPROXIMATION FOR WEIERSTRASS TRANSFORM CONNECTED WITH SPHERICAL MEAN OPERATOR
    L.T.Rachdi
    N.Msehli
    Acta Mathematica Scientia, 2012, 32 (02) : 455 - 470