Towards efficient filter pruning via topology

被引:0
|
作者
Xiaozhou Xu
Jun Chen
Hongye Su
Lei Xie
机构
[1] Zhejiang University,State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering
来源
关键词
Model compression; Filter pruning; Neural networks; Image classification;
D O I
暂无
中图分类号
学科分类号
摘要
With the development of deep neural networks, compressing and accelerating deep neural networks without performance deterioration has become a research hotspot. Among all kinds of network compression methods, network pruning is one of the most effective and popular methods. Inspired by several property-based pruning methods and geometric topology, we focus the research of the pruning method on the extraction of feature map information. We predefine a metric, called TopologyHole, used to describe the feature map and associate it with the importance of the corresponding filter. In the exploration experiments, we find out that the average TopologyHole of the feature map for the same filter is relatively stable, regardless of the number of image batches the CNNs receive. This phenomenon proves TopologyHole is a data-independent metric and valid as a criterion for filter pruning. Through a large number of experiments, we have demonstrated that priorly pruning the filters with high-TopologyHole feature maps achieves competitive performance compared to the state-of-the-art. Notably, on ImageNet, TopologyHole reduces 45.0%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} FLOPs by removing 40.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} parameters on ResNet-50 with 75.71%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, only a loss of 0.44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} in top-1 accuracy.
引用
收藏
页码:639 / 649
页数:10
相关论文
共 50 条
  • [21] A SIMPLE HYBRID FILTER PRUNING FOR EFFICIENT EDGE INFERENCE
    Basha, S. H. Shabbeer
    Gowda, Sheethal N.
    Dakala, Jayachandra
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3398 - 3402
  • [22] Holistic Filter Pruning for Efficient Deep Neural Networks
    Enderich, Lukas
    Timm, Fabian
    Burgard, Wolfram
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2595 - 2604
  • [23] Energy Efficient Distributed Topology Control Technique with Edge Pruning
    Tamboli, Mohasin
    Limkar, Suresh
    Kalbande, Maroti
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014, VOL 1, 2015, 327 : 527 - 535
  • [24] Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning
    Kong, Hao
    Liu, Di
    Luo, Xiangzhong
    Huai, Shuo
    Subramaniam, Ravi
    Makaya, Christian
    Lin, Qian
    Liu, Weichen
    [J]. 2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,
  • [25] Filter Pruning via Measuring Feature Map Information
    Shao, Linsong
    Zuo, Haorui
    Zhang, Jianlin
    Xu, Zhiyong
    Yao, Jinzhen
    Wang, Zhixing
    Li, Hong
    [J]. SENSORS, 2021, 21 (19)
  • [26] Soft and Hard Filter Pruning via Dimension Reduction
    Cai, Linhang
    An, Zhulin
    Yang, Chuanguang
    Xu, Yongjun
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [27] Pruning Filter in Filter
    Meng, Fanxu
    Cheng, Hao
    Li, Ke
    Luo, Huixiang
    Guo, Xiaowei
    Lu, Guangming
    Sun, Xing
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [28] Filter Pruning via Attention Consistency on Feature Maps
    Yang, Huoxiang
    Liang, Yongsheng
    Liu, Wei
    Meng, Fanyang
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [29] Gated filter pruning via sample manifold relationships
    Wu, Pingfan
    Huang, Hengyi
    Sun, Han
    Liu, Ningzhong
    [J]. APPLIED INTELLIGENCE, 2024, 54 (20) : 9848 - 9863
  • [30] FPWT: Filter pruning via wavelet transform for CNNs
    Liu, Yajun
    Fan, Kefeng
    Zhou, Wenju
    [J]. NEURAL NETWORKS, 2024, 179