Towards efficient filter pruning via topology

被引:0
|
作者
Xiaozhou Xu
Jun Chen
Hongye Su
Lei Xie
机构
[1] Zhejiang University,State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering
来源
关键词
Model compression; Filter pruning; Neural networks; Image classification;
D O I
暂无
中图分类号
学科分类号
摘要
With the development of deep neural networks, compressing and accelerating deep neural networks without performance deterioration has become a research hotspot. Among all kinds of network compression methods, network pruning is one of the most effective and popular methods. Inspired by several property-based pruning methods and geometric topology, we focus the research of the pruning method on the extraction of feature map information. We predefine a metric, called TopologyHole, used to describe the feature map and associate it with the importance of the corresponding filter. In the exploration experiments, we find out that the average TopologyHole of the feature map for the same filter is relatively stable, regardless of the number of image batches the CNNs receive. This phenomenon proves TopologyHole is a data-independent metric and valid as a criterion for filter pruning. Through a large number of experiments, we have demonstrated that priorly pruning the filters with high-TopologyHole feature maps achieves competitive performance compared to the state-of-the-art. Notably, on ImageNet, TopologyHole reduces 45.0%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} FLOPs by removing 40.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} parameters on ResNet-50 with 75.71%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, only a loss of 0.44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} in top-1 accuracy.
引用
收藏
页码:639 / 649
页数:10
相关论文
共 50 条
  • [1] Towards efficient filter pruning via topology
    Xu, Xiaozhou
    Chen, Jun
    Su, Hongye
    Xie, Lei
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2022, 19 (03) : 639 - 649
  • [2] Towards efficient filter pruning via adaptive automatic structure search
    Xu, Xiaozhou
    Chen, Jun
    Li, Zhishan
    Su, Hongye
    Xie, Lei
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [3] Towards compressed and efficient CNN architectures via pruning
    Narkhede, Meenal
    Mahajan, Shrinivas
    Bartakke, Prashant
    Sutaone, Mukul
    [J]. DISCOVER COMPUTING, 2024, 27 (01)
  • [4] Towards Efficient Semantic Segmentation Compression via Meta Pruning
    Mishra, Ashutosh
    Rai, Shyam Nandan
    Varma, Girish
    Jawahar, C. V.
    [J]. COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT III, 2024, 2011 : 52 - 64
  • [5] Communication-efficient federated learning via personalized filter pruning
    Min, Qi
    Luo, Fei
    Dong, Wenbo
    Gu, Chunhua
    Ding, Weichao
    [J]. INFORMATION SCIENCES, 2024, 678
  • [6] FILTER PRUNING VIA SOFTMAX ATTENTION
    Cho, Sungmin
    King, Hyeseong
    Kwon, Junseok
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3507 - 3511
  • [7] CDP: Towards Optimal Filter Pruning via Class-wise Discriminative Power
    Xu, Tianshuo
    Wu, Yuhang
    Zheng, Xiawu
    Xi, Teng
    Zhang, Gang
    Ding, Errui
    Chao, Fei
    Ji, Rongrong
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5491 - 5500
  • [8] FLOPs-efficient filter pruning via transfer scale for neural network acceleration
    Guo, Zhixin
    Xiao, Yifan
    Liao, Wenzhi
    Veelaert, Peter
    Philips, Wilfried
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 55
  • [9] ONLINE FILTER WEAKENING AND PRUNING FOR EFFICIENT CONVNETS
    Zhou, Zhengguang
    Zhou, Wengang
    Hong, Richang
    Li, Houqiang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [10] ONLINE FILTER CLUSTERING AND PRUNING FOR EFFICIENT CONVNETS
    Zhou, Zhengguang
    Zhou, Wengang
    Hong, Richang
    Li, Houqiang
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 11 - 15