Symmetry Operators of the Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation with a Quadratic Operator

被引:0
|
作者
E. A. Levchenko
A. Yu. Trifonov
A. V. Shapovalov
机构
[1] Physicotechnical Institute of National Research Tomsk Polytechnic University,
[2] National Research Tomsk State University,undefined
来源
Russian Physics Journal | 2014年 / 56卷
关键词
nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation; interwining operator; nonlinear symmetry operator;
D O I
暂无
中图分类号
学科分类号
摘要
A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions.
引用
收藏
页码:1415 / 1426
页数:11
相关论文
共 50 条
  • [1] Symmetry Operators of the Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation with a Quadratic Operator
    Levchenko, E. A.
    Trifonov, A. Yu.
    Shapovalov, A. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2014, 56 (12) : 1415 - 1426
  • [2] Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Kulagin, Anton E.
    Shapovalov, Alexander, V
    [J]. PHYSICA SCRIPTA, 2024, 99 (04)
  • [3] Symmetries of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation
    Levchenko, E. A.
    Shapovalov, A. V.
    Trifonov, A. Yu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 716 - 726
  • [4] Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Levchenko, E. A.
    Shapovalov, A. V.
    Trifonov, A. Yu
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (30)
  • [5] Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution
    E. A. Levchenko
    A. Yu. Trifonov
    A. V. Shapovalov
    [J]. Russian Physics Journal, 2015, 58 : 952 - 958
  • [6] Asymptotics of the Multidimensional Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation Near a Quasistationary Solution
    Levchenko, E. A.
    Trifonov, A. Yu.
    Shapovalov, A. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2015, 58 (07) : 952 - 958
  • [7] Semiclassical approximation for the twodimensional Fisher–Kolmogorov–Petrovskii– Piskunov equation with nonlocal nonlinearity in polar coordinates
    A. Yu. Trifonov
    A. V. Shapovalov
    [J]. Russian Physics Journal, 2011, 53
  • [8] Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Branco, J. R.
    Ferreira, J. A.
    de Oliveira, P.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2007, 57 (01) : 89 - 102
  • [9] A Chebyshev Collocation Approach to Solve Fractional Fisher-Kolmogorov-Petrovskii-Piskunov Equation with Nonlocal Condition
    Zhou, Dapeng
    Babaei, Afshin
    Banihashemi, Seddigheh
    Jafari, Hossein
    Alzabut, Jehad
    Moshokoa, Seithuti P.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [10] ON THE KOLMOGOROV-PETROVSKII-PISKUNOV EQUATION
    Unal, Arzu Ogun
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2013, 62 (01): : 1 - 10