Symmetry Operators of the Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation with a Quadratic Operator

被引:1
|
作者
Levchenko, E. A. [1 ]
Trifonov, A. Yu. [1 ]
Shapovalov, A. V. [2 ]
机构
[1] Natl Res Tomsk Polytech Univ, Physicotech Inst, Tomsk, Russia
[2] Natl Res Tomsk State Univ, Tomsk, Russia
关键词
nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation; interwining operator; nonlinear symmetry operator; NONLINEARITY;
D O I
10.1007/s11182-014-0194-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions.
引用
收藏
页码:1415 / 1426
页数:12
相关论文
共 50 条
  • [1] Symmetry Operators of the Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation with a Quadratic Operator
    E. A. Levchenko
    A. Yu. Trifonov
    A. V. Shapovalov
    [J]. Russian Physics Journal, 2014, 56 : 1415 - 1426
  • [2] Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Kulagin, Anton E.
    Shapovalov, Alexander, V
    [J]. PHYSICA SCRIPTA, 2024, 99 (04)
  • [3] Symmetries of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation
    Levchenko, E. A.
    Shapovalov, A. V.
    Trifonov, A. Yu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 716 - 726
  • [4] Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Levchenko, E. A.
    Shapovalov, A. V.
    Trifonov, A. Yu
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (30)
  • [5] Asymptotics of the Multidimensional Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation Near a Quasistationary Solution
    Levchenko, E. A.
    Trifonov, A. Yu.
    Shapovalov, A. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2015, 58 (07) : 952 - 958
  • [6] Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Branco, J. R.
    Ferreira, J. A.
    de Oliveira, P.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2007, 57 (01) : 89 - 102
  • [7] A Chebyshev Collocation Approach to Solve Fractional Fisher-Kolmogorov-Petrovskii-Piskunov Equation with Nonlocal Condition
    Zhou, Dapeng
    Babaei, Afshin
    Banihashemi, Seddigheh
    Jafari, Hossein
    Alzabut, Jehad
    Moshokoa, Seithuti P.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [8] Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Levchenko, E. A.
    Shapovalov, A. V.
    Trifonov, A. Yu
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (02)
  • [9] Fisher-Kolmogorov-Petrovskii-Piskunov方程的定态分歧
    张强
    雷开洪
    向丽
    [J]. 四川大学学报(自然科学版), 2013, 50 (01) : 6 - 10
  • [10] Asymptotic Behavior of the One-Dimensional Fisher-Kolmogorov-Petrovskii-Piskunov Equation with Anomalouos Diffusion
    Prozorov, A. A.
    Trifonov, A. Yu.
    Shapovalov, A. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2015, 58 (03) : 399 - 409