Convex cone-based ranking of decision-making units in DEA

被引:0
|
作者
Akram Dehnokhalaji
Behjat Hallaji
Narges Soltani
Jafar Sadeghi
机构
[1] Kharazmi University,Department of Computer Science, Faculty of Mathematical Sciences and Computer
[2] Kharazmi University,Department of Mathematics, Faculty of Mathematical Sciences and Computer
来源
OR Spectrum | 2017年 / 39卷
关键词
Convex cones; Total order; Complete ranking; Multicriteria decision making; Data envelopment analysis;
D O I
暂无
中图分类号
学科分类号
摘要
One of the major research streams in data envelopment analysis (DEA) is ranking decision-making units (DMUs). Utilizing a multicriteria decision-making technique, we develop a novel approach to fully rank all units. Motivated by the convex cone-based total order for multiple criteria alternatives proposed by Dehnokhalaji et al. (Nav Res Logist 61(2):155–163, 2014), we consider DMUs in DEA as multiple criteria alternatives and obtain their total ordering. Initially, some pairwise preference information is provided by the decision maker for units and the concepts of convex cones and polyhedral sets are defined in a DEA framework, correspondingly. We apply a modification of Dehnokhalaji et al. method to extract additional preference information for each pair of units and consequently obtain a full ranking (strict total ordering) of DMUs. The benefit of our approach to their method is that we apply non-radial models to overcome the instability drawback of radial models and their infeasibility occurring in DEA applications. The proposed approach is implemented for two numerical examples, and the accuracy of it is investigated through a computational test.
引用
收藏
页码:861 / 880
页数:19
相关论文
共 50 条