On the critical point of an interacting two-dimensional trapped Bose gas

被引:0
|
作者
T. P. Simula
机构
[1] Okayama University,Department of Physics
来源
关键词
03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations; 05.30.Jp Boson systems; 67.85.De Dynamic properties of condensates; excitations, and superfluid flow;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a quantized vortex excitation in a two-dimensional, harmonically trapped Bose gas and derive an equation for the Berezinskii-Kosterlitz-Thouless transition temperature based on a simple free-energy argument. We relate the critical phase-space density at the transition to the ratio between the entropy gain and the corresponding cost in energy of creating a free vortex excitation in the system.
引用
收藏
页码:453 / 455
页数:2
相关论文
共 50 条
  • [31] Collective excitation frequencies and damping rates of a two-dimensional deformed trapped Bose gas above the critical temperature
    Ghosh, TK
    [J]. PHYSICAL REVIEW A, 2001, 63 (01)
  • [32] Strongly Interacting Two-Dimensional Bose Gases
    Ha, Li-Chung
    Hung, Chen-Lung
    Zhang, Xibo
    Eismann, Ulrich
    Tung, Shih-Kuang
    Chin, Cheng
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [33] Energy of a trapped interacting bose gas
    Shi, HL
    Zheng, WM
    [J]. PHYSICAL REVIEW A, 1997, 56 (04): : 2984 - 2988
  • [34] Hartre-Fock calculation for trapped, two-dimensional interacting Bose gases of finite size
    Kim, JG
    Kang, KS
    Kim, BS
    Lee, EK
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (13) : 2559 - 2569
  • [35] Thermodynamic properties of trapped, two-dimensional interacting Bose gases in Hartree-Fock approximation
    Kim, JG
    Lee, EK
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (23) : 5575 - 5581
  • [36] Application of the static fluctuation approximation to the computation of the thermodynamic properties of an interacting trapped two-dimensional hard-sphere Bose gas
    Sakhel, Asaad R.
    Qashou, Saleem I.
    Sakhel, Roger R.
    Ghassib, Humam B.
    [J]. PHYSICAL REVIEW A, 2010, 82 (06):
  • [37] Maximum thickness of a two-dimensional trapped Bose system
    Kim, SH
    [J]. PHYSICAL REVIEW A, 2000, 61 (01): : 1
  • [38] Crossover in the dynamical critical exponent of a quenched two-dimensional Bose gas
    Groszek, A. J.
    Comaron, P.
    Proukakis, N. P.
    Billam, T. P.
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [39] Quantitative test of the mean-field description of a trapped two-dimensional Bose gas
    Bisset, R. N.
    Blakie, P. B.
    [J]. PHYSICAL REVIEW A, 2009, 80 (04):
  • [40] Two-dimensional interacting Bose–Bose droplet in random repulsive potential
    Saswata Sahu
    Dwipesh Majumder
    [J]. The European Physical Journal Plus, 137