Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-Satsuma equation

被引:21
|
作者
Li, Peiluan [1 ,2 ]
Shi, Sairu [1 ,2 ]
Xu, Changjin [3 ]
Rahman, Mati ur [4 ,5 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
[2] Longmen Lab, Luoyang 471003, Henan, Peoples R China
[3] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China
[4] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[5] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022801, Lebanon
基金
中国国家自然科学基金;
关键词
Beta time derivative; Galilean transformation; Bifurcation; Optical soliton; PARTIAL-DIFFERENTIAL-EQUATIONS; MODEL;
D O I
10.1007/s11071-024-09438-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Sasa-Satsuma (SS) equation is studied in this research study using ideas from planar dynamical theory and the beta differential operator. The SS equation is converted into two ordinary differential equations by applying the Galilean transformation. The work is since concentrated on examining the system's bifurcation points and equilibrium points. The sensitivity of the linked system to its initial values is demonstrated via graphical representations. In order to examine chaos and phase transitions, the system is changed by adding the periodic function cos(omega t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\omega t)$$\end{document}. This modification is done as part of this study. Specific optical soliton solutions are illustrated using the first integral technique. Additionally, for various combinations of frequency and amplitude values, numerical simulations are demonstrated the existence of unusual chaotic attractors, such as candy-type, torus-type, and multiscroll chaotic structures. The impact of the beta differential operator on the amplitude of various optical solitons, such as bright, dark, W-shaped, and breather solitons, are also studied.
引用
收藏
页码:7405 / 7415
页数:11
相关论文
共 50 条
  • [21] Cubic-quartic optical solitons in birefringent fibers with Sasa-Satsuma equation
    Zayed, Elsayed M. E.
    Alngar, Mohamed E. M.
    Shohib, Reham M. A.
    Biswas, Anjan
    Triki, Houria
    Yildirim, Yakup
    Alshomrani, Ali S.
    Alshehri, Hashim M.
    OPTIK, 2022, 261
  • [22] Optical solitons with Sasa-Satsuma equation by Laplace-Adomian decomposition algorithm
    Gonzalez-Gaxiola, O.
    Biswas, Anjan
    Ekici, Mehmet
    Alshomrani, Ali Saleh
    OPTIK, 2021, 229
  • [23] Stationary optical solitons with Sasa-Satsuma equation having nonlinear chromatic dispersion
    Adem, Abdullahi Rashid
    Ntsime, Basetsana Pauline
    Biswas, Anjan
    Asma, Mir
    Ekici, Mehmet
    Moshokoa, Seithuti P.
    Alzahrani, Abdullah Kamis
    Belic, Milivoj R.
    PHYSICS LETTERS A, 2020, 384 (27)
  • [24] Optical solitons to Sasa-Satsuma model in birefringent fibers with modified simple equation approach
    Yildirim, Yakup
    OPTIK, 2019, 184 : 197 - 204
  • [25] Sundry optical solitons and modulational instability in Sasa-Satsuma model
    Mibaile Justin
    Vroumsia David
    Nur Hasan Mahmud Shahen
    Azakine Sindanne Sylvere
    Hadi Rezazadeh
    Mustafa Inc
    Gambo Betchewe
    Serge Y. Doka
    Optical and Quantum Electronics, 2022, 54
  • [26] Multi-breather solutions to the Sasa-Satsuma equation
    Wu, Chengfa
    Wei, Bo
    Shi, Changyan
    Feng, Bao-Feng
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258):
  • [27] Rogue wave solutions to the coupled Sasa-Satsuma equation
    Zhang, Guangxiong
    Chen, Xiyao
    Feng, Bao-Feng
    Wu, Chengfa
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 474
  • [28] Rogue waves of the Sasa-Satsuma equation in a chaotic wave field
    Soto-Crespo, J. M.
    Devine, N.
    Hoffmann, N. P.
    Akhmediev, N.
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [29] Optical soliton solutions of fractional Sasa-Satsuma equation with beta and conformable derivatives
    Ghazala Akram
    Maasoomah Sadaf
    Saima Arshed
    Habiba Sabir
    Optical and Quantum Electronics, 2022, 54
  • [30] Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrodinger equation
    Khodadad, F. Samsami
    Mirhosseini-Alizamini, S. M.
    Gunay, B.
    Akinyemi, Lanre
    Rezazadeh, Hadi
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (12)