Dimensional reduction for Helmholtz's equation on a bounded domain

被引:0
|
作者
Kang-Man Liu
Ivo Babuška
机构
[1] Department of Mathematics,
[2] National Changhwa University of Education,undefined
[3] Paisa Village,undefined
[4] Changhwa 50058,undefined
[5] Taiwan,undefined
[6] R.O.C.; e-mail: kmliu@math.ncue.edu.tw ,undefined
[7] Texas Institute for Computational and Applied Mathematics,undefined
[8] The University of Texas at Austin,undefined
[9] Austin,undefined
[10] Texas 78712,undefined
[11] USA ,undefined
来源
Numerische Mathematik | 1997年 / 77卷
关键词
Mathematics Subject Classification (1991): 65N12, 65N15, 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
The dimensional reduction method for solving boundary value problems of Helmholtz's equation in domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega^d:=\Omega\times (-d,d)\subset {\Bbb R}^{n+1}$\end{document} by replacing them with systems of equations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n-$\end{document}dimensional space are investigated. It is proved that the existence and uniqueness for the exact solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u$\end{document} and the dimensionally reduced solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u_N$\end{document} of the boundary value problem if the input data on the faces are in some class of functions. In addition, the difference between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u_N$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^1(\Omega^d)$\end{document} is estimated as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $d$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $N$\end{document} are fixed. Finally, some numerical experiments in a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega=(0,1)\times (0,1)$\end{document} are given in order to compare theretical results.
引用
收藏
页码:501 / 533
页数:32
相关论文
共 50 条
  • [21] Properties of solutions of the Dirichlet problem for the Helmholtz equation in a two-dimensional domain with cuts
    Krutitskii, P. A.
    [J]. DIFFERENTIAL EQUATIONS, 2007, 43 (09) : 1200 - 1212
  • [22] Properties of solutions of the Dirichlet problem for the Helmholtz equation in a two-dimensional domain with cuts
    P. A. Krutitskii
    [J]. Differential Equations, 2007, 43 : 1200 - 1212
  • [23] ON ONE-DIMENSIONAL HELMHOLTZ EQUATION
    Kakharman, N.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 118 (02): : 21 - 29
  • [24] Boundary value problems for hyperholomorphic solutions of two dimensional Helmholtz equation in a fractal domain
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    Rodriguez Dagnino, Ramon M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 183 - 191
  • [25] Deep Domain Decomposition Methods: Helmholtz Equation
    Li, Wuyang
    Wang, Ziming
    Cui, Tao
    Xu, Yingxiang
    Xiang, Xueshuang
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (01) : 118 - 138
  • [26] Parallel solution of the Helmholtz equation in a multilayer domain
    Larsson, E
    Holmgren, S
    [J]. BIT NUMERICAL MATHEMATICS, 2003, 43 (02) : 387 - 411
  • [27] HELMHOLTZ EQUATION SOLUTION FOR DOMAIN OF COMPLICATED SHAPE
    BABICHEN.GO
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1970, (10): : 867 - &
  • [28] Parallel Solution of the Helmholtz Equation in a Multilayer Domain
    Elisabeth Larsson
    Sverker Holmgren
    [J]. BIT Numerical Mathematics, 2003, 43 : 387 - 411
  • [29] Hybrid Domain Decomposition Solvers for the Helmholtz Equation
    Huber, Martin
    Schoeberl, Joachim
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 351 - 358
  • [30] A TIME-DOMAIN PRECONDITIONER FOR THE HELMHOLTZ EQUATION
    Stolk, Christiaan C.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3469 - A3502