On Correlation Functions in the Coordinate and the Algebraic Bethe Ansatz

被引:0
|
作者
Rafael Hernández
Juan Miguel Nieto
机构
[1] Universidad Complutense de Madrid,Departamento de Física Teórica I
关键词
Quantum integrable systemsBethe ansatzCorrrelation functions;
D O I
暂无
中图分类号
学科分类号
摘要
The Bethe ansatz, both in its coordinate and its algebraic version, is an exceptional method to compute the eigenvectors and eigenvalues of integrable systems. However, computing correlation functions using the eigenvectors thus constructed complicates rather fast. In this article, we will compute some simple correlation functions for the isotropic Heisenberg spin chain to highlight the shortcomings of both Bethe ansätze. In order to compare the results obtained from each approach, a discussion on the normalization of states in each ansatz will be required. We will show that the analysis can be extended to the long-range spin chain governing the spectrum of anomalous dimensions of single trace operators in four-dimensional Yang-Mills with maximal supersymmetry.
引用
收藏
相关论文
共 50 条
  • [41] Algebraic Bethe ansatz for the anisotropic supersymmetric U model
    Hibberd, KE
    Gould, MD
    Links, JR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (24): : 8053 - 8065
  • [42] Algebraic bethe ansatz for the FPL2 model
    Jacobsen, J
    Zinn-Justin, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (29): : 7213 - 7225
  • [43] KP AND TODA TAU FUNCTIONS IN BETHE ANSATZ
    Takasaki, Kanehisa
    NEW TRENDS IN QUANTUM INTEGRABLE SYSTEMS, 2011, : 373 - 391
  • [44] Coordinate Bethe Ansatz for generalized t-J model
    Yue, Ruihong
    Fan, Heng
    Cao, Junpeng
    Kao Neng Wu Li Yu Ho Wu Li/High Energy Physics and Nuclear Physics, 2000, 24 (03): : 203 - 207
  • [45] Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models
    Crampe, N.
    Ragoucy, E.
    Simon, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (40)
  • [46] Generalized coordinate Bethe ansatz for non-diagonal boundaries
    Crampe, N.
    Ragoucy, E.
    NUCLEAR PHYSICS B, 2012, 858 (03) : 502 - 512
  • [47] Coordinate Bethe ansatz for generalized t-J model
    Yue, RH
    Fan, H
    Cao, JP
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2000, 24 (03): : 203 - 207
  • [48] ACTION OF THE MONODROMY MATRIX ELEMENTS IN THE GENERALIZED ALGEBRAIC BETHE ANSATZ
    Kulkarni, G.
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 217 (03) : 1889 - 1906
  • [49] Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
    Khachatryan, Sh.
    Ferraz, A.
    Kluemper, A.
    Sedrakyan, A.
    NUCLEAR PHYSICS B, 2015, 899 : 444 - 450
  • [50] The algebraic Bethe Ansatz without the Yang-Baxter equation
    Schmidt, Jeffrey R.
    CANADIAN JOURNAL OF PHYSICS, 2008, 86 (10) : 1177 - 1193