Diffusion of lithium ions in Lithium-argyrodite solid-state electrolytes

被引:0
|
作者
Ardeshir Baktash
James C. Reid
Tanglaw Roman
Debra J. Searles
机构
[1] The University of Queensland,Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology
[2] The University of Queensland,School of Mathematics and Physics
[3] The University of Sydney,School of Physics
[4] The University of Queensland,School of Chemistry and Molecular Biosciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The use of solid-state electrolytes to provide safer, next-generation rechargeable batteries is becoming more feasible as materials with greater stability and higher ionic diffusion coefficients are designed. However, accurate determination of diffusion coefficients in solids is problematic and reliable calculations are highly sought-after to understand how their structure can be modified to improve their performance. In this paper we compare diffusion coefficients calculated using nonequilibrium and equilibrium ab initio molecular dynamics simulations for highly diffusive solid-state electrolytes, to demonstrate the accuracy that can be obtained. Moreover, we show that ab initio nonequilibrium molecular dynamics can be used to determine diffusion coefficients when the diffusion is too slow for it to be feasible to obtain them using ab initio equilibrium simulations. Thereby, using ab initio nonequilibrium molecular dynamics simulations we are able to obtain accurate estimates of the diffusion coefficients of Li ions in Li6PS5Cl and Li5PS4Cl2, two promising electrolytes for all-solid-state batteries. Furthermore, these calculations show that the diffusion coefficient of lithium ions in Li5PS4Cl2 is higher than many other potential all-solid-state electrolytes, making it promising for future technologies. The reasons for variation in conductivities determined using computational and experimental methods are discussed. It is demonstrated that small degrees of disorder and vacancies can result in orders of magnitude differences in diffusivities of Li ions in Li6PS5Cl, and these factors are likely to contribute to inconsistencies observed in experimentally reported values. Notably, the introduction of Li-vacancies and disorder can enhance the ionic conductivity of Li6PS5Cl.
引用
收藏
相关论文
共 50 条
  • [21] Solid-State Electrolytes by Electrospinning Techniques for Lithium Batteries
    不详
    SMALL, 2024, 20 (32)
  • [22] Lithium battery chemistries enabled by solid-state electrolytes
    Arumugam Manthiram
    Xingwen Yu
    Shaofei Wang
    Nature Reviews Materials, 2
  • [23] Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes
    Yu, Chuang
    Li, Yong
    Li, Weihan
    Adair, Keegan R.
    Zhao, Feipeng
    Willans, Mathew
    Liang, Jianwen
    Zhao, Yang
    Wang, Changhong
    Deng, Sixu
    Li, Ruying
    Huang, Huan
    Lu, Shigang
    Sham, Tsun-Kong
    Huang, Yining
    Sun, Xueliang
    ENERGY STORAGE MATERIALS, 2020, 30 : 238 - 249
  • [24] Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries
    Zhou, Laidong
    Minafra, Nicolo
    Zeier, Wolfgang G.
    Nazar, Linda F.
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (12) : 2717 - 2728
  • [25] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Wu, Hao
    Han, Haoqin
    Yan, Zhenhua
    Zhao, Qing
    Chen, Jun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (09) : 1791 - 1808
  • [26] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Hao Wu
    Haoqin Han
    Zhenhua Yan
    Qing Zhao
    Jun Chen
    Journal of Solid State Electrochemistry, 2022, 26 : 1791 - 1808
  • [27] The role of polymers in lithium solid-state batteries with inorganic solid electrolytes
    Sen, Sudeshna
    Trevisanello, Enrico
    Niemoeller, Elard
    Shi, Bing-Xuan
    Simon, Fabian J.
    Richter, Felix H.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 18701 - 18732
  • [28] Development of solid polymer electrolytes for solid-state lithium battery applications
    Li, Jieyan
    Chen, Xin
    Muhammad, Saz
    Roy, Shubham
    Huang, Haiyan
    Yu, Chen
    Ullah, Zia
    Wang, Zeru
    Zhang, Yinghe
    Wang, Ke
    Guo, Bing
    MATERIALS TODAY ENERGY, 2024, 43
  • [29] Progress in solid electrolytes toward realizing solid-state lithium batteries
    Takada, Kazunori
    JOURNAL OF POWER SOURCES, 2018, 394 : 74 - 85
  • [30] All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes
    Jung, Yun-Chae
    Lee, Sang-Min
    Choi, Jeong-Hee
    Jang, Seung Soon
    Kim, Dong-Won
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) : A704 - A710