Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics

被引:0
|
作者
Santiago Badia
Ramon Codina
Ramon Planas
机构
[1] Universitat Politècnica de Catalunya (UPC),Centre Internacional de Metodes Numerics en Enginyeria (CIMNE)
[2] UPC,Parc Mediterrani de la Tecnologia
[3] Universitat Politècnica de Catalunya (UPC),undefined
关键词
Magnetohydrodynamics; Finite elements; Singular solutions; Stabilized finite element methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we analyze a recently proposed stabilized finite element formulation for the approximation of the resistive magnetohydrodynamics equations. The novelty of this formulation with respect to existing ones is the fact that it always converges to the physical solution, even when it is singular. We have performed a detailed stability and convergence analysis of the formulation in a simplified setting. From the convergence analysis, we infer that a particular type of meshes with a macro-element structure is needed, which can be easily obtained after a straight modification of any original mesh.
引用
收藏
页码:621 / 636
页数:15
相关论文
共 50 条
  • [1] Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics
    Badia, Santiago
    Codina, Ramon
    Planas, Ramon
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (04) : 621 - 636
  • [2] On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics
    Badia, Santiago
    Codina, Ramon
    Planas, Ramon
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 399 - 416
  • [3] Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections
    Badia, Santiago
    Planas, Ramon
    Vicente Gutierrez-Santacreu, Juan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (03) : 302 - 328
  • [4] CONVERGENT FINITE ELEMENT DISCRETIZATIONS OF THE NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS SYSTEM
    Prohl, Andreas
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (06): : 1065 - 1087
  • [5] Stabilized finite element formulation for incompressible flow on distorted meshes
    Foerster, Ch.
    Wall, W. A.
    Ramm, E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (10) : 1103 - 1126
  • [6] STABILIZED FINITE ELEMENT FORMULATION WITH DOMAIN DECOMPOSITION FOR INCOMPRESSIBLE FLOWS
    Becker, Roland
    Capatina, Daniela
    Luce, Robert
    Trujillo, David
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : A1270 - A1296
  • [7] Stabilized finite element formulation of buoyancy driven incompressible flows
    Aliabadi, S
    Abatan, A
    Johnson, A
    Abedi, J
    Yeboah, Y
    Bota, K
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (05): : 315 - 324
  • [8] CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS
    Banas, Lubomir
    Prohl, Andreas
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 1957 - 1999
  • [9] New Analysis of Mixed Finite Element Methods for Incompressible Magnetohydrodynamics
    Huang, Yuchen
    Qiu, Weifeng
    Sun, Weiwei
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (03)
  • [10] New Analysis of Mixed Finite Element Methods for Incompressible Magnetohydrodynamics
    Yuchen Huang
    Weifeng Qiu
    Weiwei Sun
    [J]. Journal of Scientific Computing, 2023, 95