CONVERGENT FINITE ELEMENT DISCRETIZATIONS OF THE NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS SYSTEM

被引:116
|
作者
Prohl, Andreas [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
Magneto-hydrodynamics; discretization; FEM; fixed-point scheme; splitting-method;
D O I
10.1051/m2an:2008034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incompressible MHD equations couple Navier-Stokes equations with Maxwell's equations to describe the flow of a viscous, incompressible, and electrically conducting fluid in a Lipschitz domain Omega subset of R-3. We verify convergence of iterates of different coupling and decoupling fully discrete schemes towards weak solutions for vanishing discretization parameters. Optimal first order of convergence is shown in the presence of strong solutions for a splitting scheme which decouples the computation of velocity field, pressure, and magnetic fields at every iteration step.
引用
收藏
页码:1065 / 1087
页数:23
相关论文
共 50 条
  • [1] CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS
    Banas, Lubomir
    Prohl, Andreas
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 1957 - 1999
  • [2] A parallel finite element algorithm for nonstationary incompressible magnetohydrodynamics equations
    Tang, Qili
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (07) : 1579 - 1595
  • [3] Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics
    Badia, Santiago
    Codina, Ramon
    Planas, Ramon
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (04) : 621 - 636
  • [4] Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics
    Santiago Badia
    Ramon Codina
    Ramon Planas
    [J]. Archives of Computational Methods in Engineering, 2015, 22 : 621 - 636
  • [5] A Convergent Finite Element Method for the Compressible Magnetohydrodynamics System
    Ding, Qianqian
    Mao, Shipeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [6] A Convergent Finite Element Method for the Compressible Magnetohydrodynamics System
    Qianqian Ding
    Shipeng Mao
    [J]. Journal of Scientific Computing, 2020, 82
  • [7] A parallel finite element method for incompressible magnetohydrodynamics equations
    Dong, Xiaojing
    He, Yinnian
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 102
  • [8] A subgrid stabilization finite element method for incompressible magnetohydrodynamics
    Belenli, Mine A.
    Kaya, Songul
    Rebholz, Leo G.
    Wilson, Nicholas E.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (07) : 1506 - 1523
  • [9] Convergence analysis of finite element method for incompressible magnetohydrodynamics system with variable density
    Ding, Qianqian
    Li, Mingxia
    [J]. Journal of Computational and Applied Mathematics, 2025, 462
  • [10] Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible Magnetohydrodynamics equations
    Qiu, Weifeng
    Shi, Ke
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (10) : 2150 - 2161