Ensemble Dependence of Fluctuations: Canonical Microcanonical Equivalence of Ensembles

被引:0
|
作者
Nicoletta Cancrini
Stefano Olla
机构
[1] DIIIE Università. L’Aquila,
[2] CEREMADE,undefined
[3] UMR-CNRS,undefined
[4] Université Paris Dauphine,undefined
[5] PSL Research University,undefined
来源
关键词
Microcanonical ensemble; Equivalence of ensembles; Local central limit theorem; Local large deviations;
D O I
暂无
中图分类号
学科分类号
摘要
We study the equivalence of microcanonical and canonical ensembles in continuous systems, in the sense of the convergence of the corresponding Gibbs measures and the first order corrections. We are particularly interested in extensive observables, like the total kinetic energy. This result is obtained by proving an Edgeworth expansion for the local central limit theorem for the energy in the canonical measure, and a corresponding local large deviations expansion. As an application we prove a formula due to Lebowitz–Percus–Verlet that express the asymptotic microcanonical variance of the kinetic energy in terms of the heat capacity.
引用
收藏
页码:707 / 730
页数:23
相关论文
共 50 条
  • [1] Ensemble Dependence of Fluctuations: Canonical Microcanonical Equivalence of Ensembles
    Cancrini, Nicoletta
    Olla, Stefano
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (04) : 707 - 730
  • [2] Nonequilibrium Microcanonical and Canonical Ensembles and Their Equivalence
    Chetrite, Raphael
    Touchette, Hugo
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (12)
  • [3] The generalized canonical ensemble and its universal equivalence with the microcanonical ensemble
    Costeniuc, M
    Ellis, RS
    Touchette, H
    Turkington, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (5-6) : 1283 - 1329
  • [4] The Generalized Canonical Ensemble and Its Universal Equivalence with the Microcanonical Ensemble
    Marius Costeniuc
    Richard S. Ellis
    Hugo Touchette
    Bruce Turkington
    [J]. Journal of Statistical Physics, 2005, 119 : 1283 - 1329
  • [5] Generalized canonical ensembles and ensemble equivalence
    Costeniuc, M
    Ellis, RS
    Touchette, H
    Turkington, B
    [J]. PHYSICAL REVIEW E, 2006, 73 (02):
  • [6] Equivalence condition for the canonical and microcanonical ensembles in coupled spin systems
    Zhang, Wenxian
    Sun, C. P.
    Nori, Franco
    [J]. PHYSICAL REVIEW E, 2010, 82 (04):
  • [7] The equivalence between the canonical and microcanonical ensembles when applied to large systems
    Gurarie, V.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2007, 75 (08) : 747 - 751
  • [8] On the Local Equivalence Between the Canonical and the Microcanonical Ensembles for Quantum Spin Systems
    Tasaki, Hal
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (04) : 905 - 926
  • [9] Non-equivalence of the microcanonical and canonical ensembles in a bosonic Josephson junction
    Gonzalez-Garcia, L. A.
    Zamora-Zamora, R. A.
    Paredes, R.
    [J]. REVISTA MEXICANA DE FISICA, 2011, 57 (04) : 382 - 387
  • [10] On the Local Equivalence Between the Canonical and the Microcanonical Ensembles for Quantum Spin Systems
    Hal Tasaki
    [J]. Journal of Statistical Physics, 2018, 172 : 905 - 926