On the Local Equivalence Between the Canonical and the Microcanonical Ensembles for Quantum Spin Systems

被引:0
|
作者
Hal Tasaki
机构
[1] Gakushuin University,Department of Physics
来源
关键词
Equivalence of ensembles; Quantum spin systems; Equilibrium states; Thermodynamic functions;
D O I
暂无
中图分类号
学科分类号
摘要
We study a quantum spin system on the d-dimensional hypercubic lattice Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} with N=Ld\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=L^d$$\end{document} sites with periodic boundary conditions. We take an arbitrary translation invariant short-ranged Hamiltonian. For this system, we consider both the canonical ensemble with inverse temperature β0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _0$$\end{document} and the microcanonical ensemble with the corresponding energy UN(β0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_N(\beta _0)$$\end{document}. For an arbitrary self-adjoint operator A^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{A}$$\end{document} whose support is contained in a hypercubic block B inside Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}, we prove that the expectation values of A^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{A}$$\end{document} with respect to these two ensembles are close to each other for large N provided that β0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _0$$\end{document} is sufficiently small and the number of sites in B is o(N1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(N^{1/2})$$\end{document}. This establishes the equivalence of ensembles on the level of local states in a large but finite system. The result is essentially that of Brandao and Cramer (here restricted to the case of the canonical and the microcanonical ensembles), but we prove improved estimates in an elementary manner. We also review and prove standard results on the thermodynamic limits of thermodynamic functions and the equivalence of ensembles in terms of thermodynamic functions. The present paper assumes only elementary knowledge on quantum statistical mechanics and quantum spin systems.
引用
收藏
页码:905 / 926
页数:21
相关论文
共 50 条