A Note on Zero Suffix Method for the Optimal Solution of the Transportation Problems

被引:0
|
作者
Gourav Gupta
Sandeep Singh
Deepika Rani
机构
[1] Baddi University of Emerging Sciences and Technology,School of Sciences
[2] Akal University,Department of Mathematics
[3] Dr. B. R. Ambedkar National Institute of Technology,Department of Mathematics
来源
关键词
Transportation problem; Optimal solution; Zero suffix method;
D O I
暂无
中图分类号
学科分类号
摘要
Classical methods of finding the optimal solution of a transportation problem requires, initial basic feasible solution using any of the appropriate method like north-west corner rule, least cost method, Vogel’s approximation method etc. This obtained solution is improved towards the optimal solution by checking the optimality criteria using any of the existing methods, e.g., the modified distribution method, stepping-stone method etc. But Sudhakar et al. (Eur J Sci Res 68:254–257, 2012) suggested an approach called the zero suffix method that gives the optimal solution for transportation problems directly, i.e., without finding the initial basic feasible solution initially.
引用
收藏
页码:293 / 294
页数:1
相关论文
共 50 条
  • [31] Optimal shapes and masses, and optimal transportation problems
    Buttazzo, G
    De Pascale, L
    OPTIMAL TRANSPORTATION AND APPLICATIONS, 2003, 1813 : 11 - +
  • [32] NOTE ON PENALTY METHOD FOR DISTRIBUTED PARAMETER OPTIMAL CONTROL PROBLEMS
    SASAI, H
    SIAM JOURNAL ON CONTROL, 1972, 10 (04): : 730 - 736
  • [33] TRANSPORTATION PROBLEM BY MONALISHA'S APPROXIMATION METHOD FOR OPTIMAL SOLUTION (MAMOS)
    Pattnaik, Monalisha
    LOGFORUM, 2015, 11 (03) : 267 - 273
  • [34] The study about the method of seaking the optimal solution of degenerate transportation problem
    Liu, J.-X.
    Chen, S.-G.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2001, 23 (10): : 39 - 42
  • [35] ON A METHOD OF APPROXIMATE SOLUTION OF THE OPTIMAL-CONTROL PROBLEMS
    GOLICHEV, II
    DOKLADY AKADEMII NAUK SSSR, 1980, 254 (04): : 780 - 784
  • [36] Method for Solution of the Multi-Index Transportation Problems with Fuzzy Parameters
    Kosenko, O. V.
    Sinyavskaya, E. D.
    Shestova, E. A.
    Kosenko, E. Yu.
    Chemes, O. M.
    PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 179 - 182
  • [37] Optimal networks for mass transportation problems
    Brancolini, A
    Buttazzo, G
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2005, 11 (01): : 88 - 101
  • [38] On a class of multidimensional optimal transportation problems
    Carlier, G
    JOURNAL OF CONVEX ANALYSIS, 2003, 10 (02) : 517 - 529
  • [39] On the regularity of solutions of optimal transportation problems
    Loeper, Gregoire
    ACTA MATHEMATICA, 2009, 202 (02) : 241 - 283
  • [40] ARCNET is the optimal solution for pipeline transportation
    Gostenin, VK
    Sysoev, VV
    NEFTYANOE KHOZYAISTVO, 1998, (08): : 92 - 95