Certificates of infeasibility via nonsmooth optimization

被引:0
|
作者
Hannes Fendl
Arnold Neumaier
Hermann Schichl
机构
[1] University of Vienna Austria,Faculty of Mathematics
来源
关键词
Global optimization; Nonsmooth optimization; Certificate of infeasibility; 90C26; 90C56; 90C57;
D O I
暂无
中图分类号
学科分类号
摘要
An important aspect in the solution process of constraint satisfaction problems is to identify exclusion boxes which are boxes that do not contain feasible points. This paper presents a certificate of infeasibility for finding such boxes by solving a linearly constrained nonsmooth optimization problem. Furthermore, the constructed certificate can be used to enlarge an exclusion box by solving a nonlinearly constrained nonsmooth optimization problem.
引用
收藏
页码:157 / 182
页数:25
相关论文
共 50 条
  • [41] Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions
    van Ackooij, Wim
    de Oliveira, Welington
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (01) : 49 - 80
  • [42] Mixed H2/H∞ control via nonsmooth optimization
    Apkarian, Pierre
    Noll, Dominikus
    Rondepierre, Aude
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 6460 - 6465
  • [43] DYNAMIC CONTROL OF INFEASIBILITY IN EQUALITY CONSTRAINED OPTIMIZATION
    Bielschowsky, Roberto H.
    Gomes, Francisco A. M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) : 1299 - 1325
  • [44] Distributed nonsmooth optimization with different local constraints via exact penalty
    Liu, Shuyu
    Liang, Shu
    Hong, Yiguang
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1150 - 1155
  • [45] Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions
    Wim van Ackooij
    Welington de Oliveira
    [J]. Journal of Optimization Theory and Applications, 2019, 182 : 49 - 80
  • [46] Nonsmooth global optimization
    Ratz, D
    [J]. PERSPECTIVES ON ENCLOSURE METHODS, 2001, : 277 - 339
  • [47] OPTIMIZATION WITH NONSMOOTH DATA
    ZOWE, J
    [J]. OR SPEKTRUM, 1987, 9 (04) : 195 - 201
  • [48] ε-intervals in nonsmooth optimization
    Gorges, C
    Ratschek, H
    [J]. RECENT ADVANCES IN OPTIMIZATION, 1997, 452 : 75 - 89
  • [49] ON THE METHODS OF NONSMOOTH OPTIMIZATION
    MAKELA, MM
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1990, 143 : 177 - 186
  • [50] Computational nonsmooth optimization
    Qi, LQ
    Ruszczynski, A
    Womersley, R
    [J]. MATHEMATICAL PROGRAMMING, 1997, 76 (03) : 351 - 352