Genome-enabled prediction using probabilistic neural network classifiers

被引:0
|
作者
Juan Manuel González-Camacho
José Crossa
Paulino Pérez-Rodríguez
Leonardo Ornella
Daniel Gianola
机构
[1] Colegio de Postgraduados,Department of Animal Sciences
[2] Campus Montecillo,undefined
[3] Biometrics and Statistics Unit (BSU),undefined
[4] International Maize and Wheat Improvement Center (CIMMYT),undefined
[5] NIDERA SEMILLAS S.A.,undefined
[6] University of Wisconsin,undefined
来源
BMC Genomics | / 17卷
关键词
Average precision; Bayesian classifier; Genomic selection; Machine-learning algorithm; Multi-layer perceptron; Non-parametric model;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Neural network classifiers for local wind prediction
    Kretzschmar, R
    Eckert, P
    Cattani, D
    Eggimann, F
    [J]. JOURNAL OF APPLIED METEOROLOGY, 2004, 43 (05): : 727 - 738
  • [32] Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle
    Anita Ehret
    David Hochstuhl
    Daniel Gianola
    Georg Thaller
    [J]. Genetics Selection Evolution, 47
  • [33] A Revolution in Plant Metabolism: Genome-Enabled Pathway Discovery
    Kim, Jeongwoon
    Buell, C. Robin
    [J]. PLANT PHYSIOLOGY, 2015, 169 (03) : 1532 - 1539
  • [34] Genome-Enabled Insights into Downy Mildew Biology and Evolution
    Fletcher, Kyle
    Michelmore, Richard
    [J]. ANNUAL REVIEW OF PHYTOPATHOLOGY, 2023, 61 : 165 - 183
  • [35] Microbial genome-enabled insights into plant–microorganism interactions
    David S. Guttman
    Alice C. McHardy
    Paul Schulze-Lefert
    [J]. Nature Reviews Genetics, 2014, 15 : 797 - 813
  • [36] Genome-enabled discovery of anthraquinone biosynthesis in Senna tora
    Kang, Sang-Ho
    Pandey, Ramesh Prasad
    Lee, Chang-Muk
    Sim, Joon-Soo
    Jeong, Jin-Tae
    Choi, Beom-Soon
    Jung, Myunghee
    Ginzburg, Daniel
    Zhao, Kangmei
    Won, So Youn
    Oh, Tae-Jin
    Yu, Yeisoo
    Kim, Nam-Hoon
    Lee, Ok Ran
    Lee, Tae-Ho
    Bashyal, Puspalata
    Kim, Tae-Su
    Lee, Woo-Haeng
    Hawkins, Charles
    Kim, Chang-Kug
    Kim, Jung Sun
    Ahn, Byoung Ohg
    Rhee, Seung Yon
    Sohng, Jae Kyung
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [37] Genome-enabled prediction models for black tea (Camellia sinensis) quality and drought tolerance traits
    Koech, Robert K.
    Malebe, Pelly M.
    Nyarukowa, Christopher
    Mose, Richard
    Kamunya, Samson M.
    Loots, Theodor
    Apostolides, Zeno
    [J]. PLANT BREEDING, 2020, 139 (05) : 1003 - 1015
  • [38] Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments
    Kumar, Satish
    Molloy, Claire
    Munoz, Patricio
    Daetwyler, Hans
    Chagne, David
    Volz, Richard
    [J]. G3-GENES GENOMES GENETICS, 2015, 5 (12): : 2711 - 2718
  • [39] Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle
    Ehret, Anita
    Hochstuhl, David
    Gianola, Daniel
    Thaller, Georg
    [J]. GENETICS SELECTION EVOLUTION, 2015, 47
  • [40] A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait
    Gianola, Daniel
    Wu, Xiao-Lin
    Manfredi, Eduardo
    Simianer, Henner
    [J]. GENETICA, 2010, 138 (9-10) : 959 - 977