Quantum entanglement as a resource to locally distinguish orthogonal product states

被引:0
|
作者
Tian-Qing Cao
Qiao-Ling Xin
Zhi-Chao Zhang
机构
[1] Tiangong University,School of Mathematical Sciences
[2] Tianjin Normal University,School of Mathematical Sciences
[3] University of Science and Technology Beijing,School of Mathematics and Physics
来源
关键词
Quantum entanglement; Quantum nonlocality; The local distinguishability of quantum states;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Zhang et al. constructed one family of orthogonal product states which cannot be perfectly distinguished by local operations and classical communication (LOCC) in the 2m⊗2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m\otimes 2n$$\end{document} quantum system with m,n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\ge 2$$\end{document} (Sci Rep 6: 28864, 2016). However, it is an interesting question that what entanglement resources are necessary and/or sufficient for this task to be possible with LOCC. In this paper, we study the local distinguishability of mutually orthogonal product states with quantum entanglement as an auxiliary resource. Specifically, we put forward that the locally indistinguishable orthogonal product states in a low-dimensional system can be locally distinguished with certainty merely by utilizing an additional 2⊗2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\otimes 2$$\end{document} maximally entangled state. Then, we generalize the distinguishing method to the states in 2m⊗2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m\otimes 2n$$\end{document}. These results reveal the phenomenon of less nonlocality with more entanglement. And they enable us to better understand the role of quantum entanglement in the local discrimination of quantum states and the relationship between entanglement and nonlocality.
引用
收藏
相关论文
共 50 条
  • [31] LOCC indistinguishable orthogonal product quantum states
    Xiaoqian Zhang
    Xiaoqing Tan
    Jian Weng
    Yongjun Li
    Scientific Reports, 6
  • [32] Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states
    Bandyopadhyay, Somshubhro
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [33] Using entanglement more efficiently in distinguishing orthogonal product states by LOCC
    Lv-Jun Li
    Fei Gao
    Zhi-Chao Zhang
    Qiao-Yan Wen
    Quantum Information Processing, 2019, 18
  • [34] Using entanglement more efficiently in distinguishing orthogonal product states by LOCC
    Li, Lv-Jun
    Gao, Fei
    Zhang, Zhi-Chao
    Wen, Qiao-Yan
    QUANTUM INFORMATION PROCESSING, 2019, 18 (11)
  • [35] Quantum key distribution scheme with orthogonal product states
    Guo, G.-P.
    Li, C.-F.
    Shi, B.-S.
    Li, J.
    Guo, G.-C.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 423011 - 423014
  • [36] New Constructions of Orthogonal Product Basis Quantum States
    Zuo, Huijuan
    Liu, Shuxia
    Yang, Yinghui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (05) : 1597 - 1603
  • [37] Nonlocality of orthogonal product-basis quantum states
    Wang, Yan-Ling
    Li, Mao-Sheng
    Zheng, Zhu-Jun
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [38] New Constructions of Orthogonal Product Basis Quantum States
    Huijuan Zuo
    Shuxia Liu
    Yinghui Yang
    International Journal of Theoretical Physics, 2018, 57 : 1597 - 1603
  • [39] Quantum key distribution scheme with orthogonal product states
    Guo, GP
    Li, CF
    Shi, BS
    Li, R
    Guo, GC
    PHYSICAL REVIEW A, 2001, 64 (04): : 4
  • [40] Quantum key distribution protocol using orthogonal product quantum states
    Zhao, Qiu-Yu
    Zhang, De-Xi
    Li, Xiao-Yu
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2008, 37 (03): : 401 - 403