Experimental verification of quantum computation

被引:0
|
作者
Stefanie Barz
Joseph F. Fitzsimons
Elham Kashefi
Philip Walther
机构
[1] University of Vienna,
[2] Faculty of Physics,undefined
[3] Singapore University of Technology and Design,undefined
[4] Centre for Quantum Technologies,undefined
[5] National University of Singapore,undefined
[6] School of Informatics,undefined
[7] University of Edinburgh,undefined
来源
Nature Physics | 2013年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation.
引用
收藏
页码:727 / 731
页数:4
相关论文
共 50 条
  • [41] QUANTUM-MECHANICAL VERIFICATION OF EXPERIMENTAL POTENTIALS FOR NAHE
    PONTIUS, EM
    SANDO, KM
    [J]. PHYSICAL REVIEW A, 1983, 28 (05): : 3117 - 3118
  • [42] Experimental verification of reciprocity relations in quantum thermoelectric transport
    Matthews, J.
    Battista, F.
    Sanchez, D.
    Samuelsson, P.
    Linke, H.
    [J]. PHYSICAL REVIEW B, 2014, 90 (16):
  • [43] Efficient Experimental Verification of Quantum Gates with Local Operations
    Zhang, Rui-Qi
    Hou, Zhibo
    Tang, Jun-Feng
    Shang, Jiangwei
    Zhu, Huangjun
    Xiang, Guo-Yong
    Li, Chuan-Feng
    Guo, Guang-Can
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (02)
  • [44] Experimental verification of a coherence factorization law for quantum states
    YI ZHENG
    CHENG-JIE ZHANG
    ZHENG-HAO LIU
    JIAN-WEI SHAO
    JIN-SHI XU
    CHUAN-FENG LI
    GUANG-CAN GUO
    [J]. Photonics Research, 2022, (09) : 2172 - 2177
  • [45] Experimental quantum verification in the presence of temporally correlated noise
    Mavadia, S.
    Edmunds, C. L.
    Hempel, C.
    Ball, H.
    Roy, F.
    Stace, T. M.
    Biercuk, M. J.
    [J]. NPJ QUANTUM INFORMATION, 2018, 4
  • [46] A simple quantum computer: Experimental realization of quantum computation algorithms with linear optics
    Takeuchi, S
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2001, 84 (11): : 52 - 60
  • [48] Experimental nonlinear sign shift for linear optics quantum computation
    Sanaka, K
    Jennewein, T
    Pan, JW
    Resch, K
    Zeilinger, A
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (01) : 4
  • [49] Adiabatic quantum computation with flux qubits, first experimental results
    van der Ploeg, S. H. W.
    Izmalkov, A.
    Grajcar, M.
    Huebner, U.
    Linzen, S.
    Uchaikin, S.
    Wagner, Th.
    Smirnov, A. Yu.
    van den Brink, A. Maasen
    Amin, M. H. S.
    Zagoskin, A. M.
    Il'ichev, E.
    Meyer, H.-G.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 113 - 119
  • [50] Experimental requirements for Grover's algorithm in optical quantum computation
    Dodd, JL
    Ralph, TC
    Milburn, GJ
    [J]. PHYSICAL REVIEW A, 2003, 68 (04)