Conformal representations of Leibniz algebras

被引:0
|
作者
P. S. Kolesnikov
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
Leibniz algebra; dialgebra; conformal algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study the embedding construction of Lie dialgebras (Leibniz algebras) into conformal algebras. This construction leads to the concept of a conformal representation of Leibniz algebras. We prove that each (finite-dimensional) Leibniz algebra possesses a faithful linear representation (of finite type). As a corollary we give a new proof of the Poincaré-Birkhoff-Witt theorem for Leibniz algebras.
引用
收藏
页码:429 / 435
页数:6
相关论文
共 50 条
  • [41] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [42] Classification of finite dimensional uniserial representations of conformal Galilei algebras
    Cagliero, Leandro
    Gutierrez Frez, Luis
    Szechtman, Fernando
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
  • [43] DECOMPOSITIONS OF REPRESENTATIONS OF EXCEPTIONAL AFFINE ALGEBRAS WITH RESPECT TO CONFORMAL SUBALGEBRAS
    KAC, VG
    SANIELEVICI, MN
    PHYSICAL REVIEW D, 1988, 37 (08) : 2231 - 2237
  • [44] Representations of Generalized Loop Planar Galilean Conformal Algebras W(Γ)
    Yang, Yu
    Wang, Xingtao
    AXIOMS, 2023, 12 (09)
  • [45] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Stitzinger, Ernie
    White, Ashley
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 627 - 633
  • [46] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Ernie Stitzinger
    Ashley White
    Algebras and Representation Theory, 2018, 21 : 627 - 633
  • [47] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [48] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138
  • [49] Thin Leibniz algebras
    Omirov, B. A.
    MATHEMATICAL NOTES, 2006, 80 (1-2) : 244 - 253
  • [50] Thin Leibniz algebras
    B. A. Omirov
    Mathematical Notes, 2006, 80 : 244 - 253