Polynomial Convergence of Second-Order Mehrotra-Type Predictor-Corrector Algorithms over Symmetric Cones

被引:0
|
作者
Changhe Liu
Hongwei Liu
Xinze Liu
机构
[1] Xidian University,Department of Mathematics
[2] Henan University of Science and Technology,Department of Applied Mathematics
[3] Lincang Teachers’ College,Department of Mathematics and Sciences
关键词
Symmetric cone; Euclidean Jordan algebra; Interior-point methods; Second-order methods; Mehrotra-type algorithm; Polynomial complexity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an extension of the variant of Mehrotra’s predictor–corrector algorithm which was proposed by Salahi and Mahdavi-Amiri (Appl. Math. Comput. 183:646–658, 2006) for linear programming to symmetric cones. This algorithm incorporates a safeguard in Mehrotra’s original predictor–corrector algorithm, which keeps the iterates in the prescribed neighborhood and allows us to get a reasonably large step size. In our algorithm, the safeguard strategy is not necessarily used when the affine scaling step behaves poorly, which is different from the algorithm of Salahi and Mahdavi-Amiri. We slightly modify the maximum step size in the affine scaling step and extend the algorithm to symmetric cones using the machinery of Euclidean Jordan algebras. Based on the Nesterov–Todd direction, we show that the iteration-complexity bound of the proposed algorithm is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(r\log\varepsilon^{-1})$\end{document}, where r is the rank of the associated Euclidean Jordan algebras and ε>0 is the required precision.
引用
收藏
页码:949 / 965
页数:16
相关论文
共 50 条
  • [41] An infeasible-interior-point predictor-corrector algorithm for the second-order cone program
    Chi Xiaoni
    Liu Sanyang
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (03) : 551 - 559
  • [42] SECOND-ORDER SYMMETRIC DUALITY IN MULTIOBJECTIVE PROGRAMMING OVER CONES
    Gulati, Tilak Raj
    Mehndiratta, Geeta
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) : 19 - 25
  • [43] Nondifferentiable multiobjective Mond–Weir type second-order symmetric duality over cones
    T. R. Gulati
    Geeta Mehndiratta
    Optimization Letters, 2010, 4 : 293 - 309
  • [44] A Wide Neighborhood Second-order Predictor-corrector Interior-point Algorithm for Semidefinite Optimization with Modified Corrector Directions
    Kheirfam, Behrouz
    Mohamadi-Sangachin, Mohaddeseh
    FUNDAMENTA INFORMATICAE, 2017, 153 (04) : 327 - 346
  • [45] A new second-order symmetric duality in multiobjective programming over cones
    Hu, Qingjie
    Tang, Lingbing
    Wang, Jingtong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (03) : 416 - 422
  • [46] Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones
    Gulati, T. R.
    Mehndiratta, Geeta
    OPTIMIZATION LETTERS, 2010, 4 (02) : 293 - 309
  • [47] Mond-Weir type second-order symmetric duality in multiobjective programming over cones
    Gulati, T. R.
    Geeta
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 466 - 471
  • [48] Error estimate of a stabilized second-order linear predictor-corrector scheme for the Swift-Hohenberg equation
    Qi, Longzhao
    Hou, Yanren
    APPLIED MATHEMATICS LETTERS, 2022, 127
  • [49] A Mizuno-Todd-Ye predictor-corrector infeasible-interior-point method for linear programming over symmetric cones
    Ximei Yang
    Yinkui Zhang
    Hongwei Liu
    Yonggang Pei
    Numerical Algorithms, 2016, 72 : 915 - 936
  • [50] A Mizuno-Todd-Ye predictor-corrector infeasible-interior-point method for linear programming over symmetric cones
    Yang, Ximei
    Zhang, Yinkui
    Liu, Hongwei
    Pei, Yonggang
    NUMERICAL ALGORITHMS, 2016, 72 (04) : 915 - 936