Laplace operators on Sasaki-Einstein manifolds

被引:0
|
作者
Johannes Schmude
机构
[1] Universidad de Oviedo,Department of Physics
[2] RIKEN Nishina Center,undefined
关键词
Differential and Algebraic Geometry; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We decompose the de Rham Laplacian on Sasaki-Einstein manifolds as a sum over mostly positive definite terms. An immediate consequence are lower bounds on its spectrum. These bounds constitute a supergravity equivalent of the unitarity bounds in dual superconformal field theories. The proof uses a generalisation of Kähler identities to the Sasaki-Einstein case.
引用
收藏
相关论文
共 50 条
  • [21] Semiclassical strings in Sasaki-Einstein manifolds and long operators in N=1 gauge theories
    Benvenuti, Sergio
    Kruczenski, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (10):
  • [22] Sasaki-Einstein metrics on a class of 7-manifolds
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 140 : 111 - 124
  • [23] Type IIB supergravity on squashed Sasaki-Einstein manifolds
    Cassani, Davide
    Dall'Agata, Gianguido
    Faedo, Anton F.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):
  • [24] Semi-classical strings in Sasaki-Einstein manifolds
    Giataganas, Dimitrios
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [25] Type IIB supergravity on squashed Sasaki-Einstein manifolds
    Davide Cassani
    Gianguido Dall’Agata
    Anton F. Faedo
    [J]. Journal of High Energy Physics, 2010
  • [26] Superconformal indices, Sasaki-Einstein manifolds, and cyclic homologies
    Eager, Richard
    Schmude, Johannes
    Tachikawa, Yuji
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (01) : 129 - 175
  • [27] Scalar Laplacian on Sasaki-Einstein manifolds Yp,q
    Kihara, H
    Sakaguchi, M
    Yasui, Y
    [J]. PHYSICS LETTERS B, 2005, 621 (3-4) : 288 - 294
  • [28] Special Legendrian submanifolds in toric Sasaki-Einstein manifolds
    Moriyama, Takayuki
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 465 - 484
  • [29] The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 39 - 65
  • [30] Localisation on Sasaki-Einstein manifolds from holomorphic functions on the cone
    Schmude, Johannes
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01):