Laplace operators on Sasaki-Einstein manifolds

被引:0
|
作者
Johannes Schmude
机构
[1] Universidad de Oviedo,Department of Physics
[2] RIKEN Nishina Center,undefined
关键词
Differential and Algebraic Geometry; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We decompose the de Rham Laplacian on Sasaki-Einstein manifolds as a sum over mostly positive definite terms. An immediate consequence are lower bounds on its spectrum. These bounds constitute a supergravity equivalent of the unitarity bounds in dual superconformal field theories. The proof uses a generalisation of Kähler identities to the Sasaki-Einstein case.
引用
收藏
相关论文
共 50 条
  • [1] Laplace operators on Sasaki-Einstein manifolds
    Schmude, Johannes
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [2] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635
  • [3] On Sasaki-Einstein manifolds in dimension five
    Charles P. Boyer
    Michael Nakamaye
    [J]. Geometriae Dedicata, 2010, 144 : 141 - 156
  • [4] NEW EXAMPLES OF SASAKI-EINSTEIN MANIFOLDS
    Mabuchi, Toshiki
    Nakagawa, Yasuhiro
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (02) : 243 - 252
  • [5] On the topology of some Sasaki-Einstein manifolds
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 57 - 72
  • [6] Sasaki-Einstein manifolds and their spinorial geometry
    Kim, NW
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (02) : 197 - 201
  • [7] On Sasaki-Einstein manifolds in dimension five
    Boyer, Charles P.
    Nakamaye, Michael
    [J]. GEOMETRIAE DEDICATA, 2010, 144 (01) : 141 - 156
  • [8] Sasaki-einstein manifolds and volume minimisation
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) : 611 - 673
  • [9] Some Examples of Toric Sasaki-Einstein Manifolds
    van Coevering, Craig
    [J]. RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 185 - 232
  • [10] A New Infinite Class of Sasaki-Einstein Manifolds
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    Waldram, Daniel
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 8 (06) : 987 - 1000