Silicon CMOS architecture for a spin-based quantum computer

被引:0
|
作者
M. Veldhorst
H. G. J. Eenink
C. H. Yang
A. S. Dzurak
机构
[1] Qutech and Kavli Institute of Nanoscience,Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications
[2] The University of New South Wales,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
引用
收藏
相关论文
共 50 条
  • [41] Spin-based quantum information processing in magnetic quantum dots
    Jacak, L
    Krasnyj, J
    Jacak, D
    Gonczarek, R
    Krzyzosiak, M
    Machnikowski, P
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2005, 12 (02): : 133 - 141
  • [42] Theoretical issues in spin-based quantum dot quantum computation
    Hu, XD
    Das Sarma, S
    [J]. EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 67 - 73
  • [43] Scalable star-shaped architecture for universal spin-based nonadiabatic holonomic quantum computation
    Mousolou, Vahid Azimi
    [J]. PHYSICAL REVIEW A, 2018, 98 (06)
  • [44] All Optical Spin-Based Quantum Information Processing
    E. Pazy
    T. Calarco
    I. D'Amico
    P. Zanardi
    F. Rossi
    P. Zoller
    [J]. Journal of Superconductivity, 2003, 16 : 383 - 385
  • [45] Material platforms for spin-based photonic quantum technologies
    Atature, Mete
    Englund, Dirk
    Vamivakas, Nick
    Lee, Sang-Yun
    Wrachtrup, Joerg
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (05): : 38 - 51
  • [46] Probing fundamental physics with spin-based quantum sensors
    Kimball, Derek F. Jackson
    Budker, Dmitry
    Chupp, Timothy E.
    Geraci, Andrew A.
    Kolkowitz, Shimon
    Singh, Jaideep T.
    Sushkov, Alexander O.
    [J]. PHYSICAL REVIEW A, 2023, 108 (01)
  • [47] Material platforms for spin-based photonic quantum technologies
    Mete Atatüre
    Dirk Englund
    Nick Vamivakas
    Sang-Yun Lee
    Joerg Wrachtrup
    [J]. Nature Reviews Materials, 2018, 3 : 38 - 51
  • [48] Si MOS technology for spin-based quantum computing
    Hutin, L.
    Bertrand, B.
    Maurand, R.
    Crippa, A.
    Urdampilleta, M.
    Kim, Y. J.
    Amisse, A.
    Bohuslavskyi, H.
    Bourdet, L.
    Barraud, S.
    Jeh, X.
    Niquet, Y-M
    Sanquer, M.
    Bauerle, C.
    Meunier, T.
    De Franceschi, S.
    Vinet, M.
    [J]. 2018 48TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2018, : 12 - 17
  • [49] All optical spin-based quantum information processing
    Pazy, E
    Calarco, T
    D'Amico, I
    Zanardi, P
    Rossi, F
    Zoller, P
    [J]. JOURNAL OF SUPERCONDUCTIVITY, 2003, 16 (02): : 383 - 385
  • [50] Molecular Prototypes for Spin-Based CNOT and SWAP Quantum Gates
    Luis, F.
    Repolles, A.
    Martinez-Perez, M. J.
    Aguila, D.
    Roubeau, O.
    Zueco, D.
    Alonso, P. J.
    Evangelisti, M.
    Camon, A.
    Sese, J.
    Barrios, L. A.
    Aromi, G.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (11)