Silicon CMOS architecture for a spin-based quantum computer

被引:0
|
作者
M. Veldhorst
H. G. J. Eenink
C. H. Yang
A. S. Dzurak
机构
[1] Qutech and Kavli Institute of Nanoscience,Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications
[2] The University of New South Wales,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
引用
收藏
相关论文
共 50 条
  • [1] Silicon CMOS architecture for a spin-based quantum computer
    Veldhorst, M.
    Eenink, H. G. J.
    Yang, C. H.
    Dzurak, A. S.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] Spin-based Quantum Computing in Silicon: Scaling with CMOS
    Zalba, Miguel Fernando Gonzalez
    [J]. 2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,
  • [3] Simulation of Si:P spin-based quantum computer architecture
    Chang, Yia-Chung
    Fang, Angbo
    [J]. SOLID-STATE QUANTUM COMPUTING, PROCEEDINGS, 2008, 1074 : 44 - +
  • [4] Spin-based quantum computing in silicon CMOS-compatible platforms
    Dzurak, A. S.
    [J]. 2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,
  • [5] Spin-based Quantum Computing in Silicon
    Dzurak, Andrew
    [J]. 2015 SILICON NANOELECTRONICS WORKSHOP (SNW), 2015,
  • [6] Spin-based Quantum Dot Quantum Computing in Silicon
    Eriksson, Mark A.
    Friesen, Mark
    Coppersmith, Susan N.
    Joynt, Robert
    Klein, Levente J.
    Slinker, Keith
    Tahan, Charles
    Mooney, P. M.
    Chu, J. O.
    Koester, S. J.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 133 - 146
  • [7] Spin-Based Quantum Dot Quantum Computing in Silicon
    Mark A. Eriksson
    Mark Friesen
    Susan N. Coppersmith
    Robert Joynt
    Levente J. Klein
    Keith Slinker
    Charles Tahan
    P. M. Mooney
    J. O. Chu
    S. J. Koester
    [J]. Quantum Information Processing, 2004, 3 : 133 - 146
  • [8] Silicon quantum dot devices for spin-based quantum computing
    Kodera, Tetsuo
    [J]. 2020 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2020, : 31 - 32
  • [9] Electron spin coherence in semiconductors: Considerations for a spin-based solid-state quantum computer architecture
    de Sousa, R
    Das Sarma, S
    [J]. PHYSICAL REVIEW B, 2003, 67 (03)
  • [10] Si Platform for Implementing Spin-based Quantum Computer
    Tarucha, Seigo
    [J]. 6TH IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2022), 2022, : 304 - 306