Local Semicircle Law in the Bulk for Gaussian β-Ensemble

被引:0
|
作者
Philippe Sosoe
Percy Wong
机构
[1] Princeton University,
来源
关键词
Random matrices; Log-gases;
D O I
暂无
中图分类号
学科分类号
摘要
We use the tridiagonal matrix representation to derive a local semicircle law for Gaussian beta ensembles at the optimal level of n−1+δ for any δ>0. Using a resolvent expansion, we first derive a semicircle law at the intermediate level of n−1/2+δ; then an induction argument allows us to reach the optimal level. This result was obtained in a different setting, using different methods, by Bourgade, Erdös, and Yau in arXiv:1104.2272 [math.PR] and Bao and Su in arXiv:1104.3431 [math.PR]. Our approach is new and could be extended to other tridiagonal models.
引用
收藏
页码:204 / 232
页数:28
相关论文
共 50 条
  • [1] Local Semicircle Law in the Bulk for Gaussian β-Ensemble
    Sosoe, Philippe
    Wong, Percy
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (02) : 204 - 232
  • [2] Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble
    Kholopov, A. A.
    Tikhomirov, A. N.
    Timushev, D. A.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2008, 52 (01) : 171 - 177
  • [3] Local Semicircle Law at the Spectral Edge for Gaussian β-Ensembles
    Percy Wong
    [J]. Communications in Mathematical Physics, 2012, 312 : 251 - 263
  • [4] Local Semicircle Law at the Spectral Edge for Gaussian β-Ensembles
    Wong, Percy
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (01) : 251 - 263
  • [5] Semicircle Law for a Matrix Ensemble with Dependent Entries
    Winfried Hochstättler
    Werner Kirsch
    Simone Warzel
    [J]. Journal of Theoretical Probability, 2016, 29 : 1047 - 1068
  • [6] Semicircle Law for a Matrix Ensemble with Dependent Entries
    Hochstaettler, Winfried
    Kirsch, Werner
    Warzel, Simone
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (03) : 1047 - 1068
  • [7] On Universality of Bulk Local Regime of the Deformed Gaussian Unitary Ensemble
    Shcherbina, T.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2009, 5 (04) : 396 - 433
  • [8] Local Semicircle Law for Random Regular Graphs
    Bauerschmidt, Roland
    Knowles, Antti
    Yau, Horng-Tzer
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (10) : 1898 - 1960
  • [9] Local semicircle law with imprimitive variance matrix
    Ajanki, Oskari
    Erdos, Laszlo
    Krueger, Torben
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 9
  • [10] Local Semicircle Law Under Fourth Moment Condition
    F. Götze
    A. Naumov
    A. Tikhomirov
    [J]. Journal of Theoretical Probability, 2020, 33 : 1327 - 1362