Local Semicircle Law at the Spectral Edge for Gaussian β-Ensembles

被引:3
|
作者
Wong, Percy [1 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
关键词
DISTRIBUTIONS; MATRICES;
D O I
10.1007/s00220-012-1456-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the local semicircle law for Gaussian beta-ensembles at the edge of the spectrum. We prove that at the almost optimal level of n(-2/3+is an element of), the local semicircle law holds for all beta >= 1 at the edge. The proof of the main theorem relies on the calculation of the moments of the tridiagonal model of Gaussian beta-ensembles up to the p(n)-moment, where p(n) = O(n(2/3-is an element of)). The result is analogous to the result of Sinai and Soshnikov (Funct Anal Appl 32(2), 1998) for Wigner matrices, but the combinatorics involved in the calculations are different.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 50 条
  • [1] Local Semicircle Law at the Spectral Edge for Gaussian β-Ensembles
    Percy Wong
    [J]. Communications in Mathematical Physics, 2012, 312 : 251 - 263
  • [2] Local Semicircle Law in the Bulk for Gaussian β-Ensemble
    Sosoe, Philippe
    Wong, Percy
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (02) : 204 - 232
  • [3] Local Semicircle Law in the Bulk for Gaussian β-Ensemble
    Philippe Sosoe
    Percy Wong
    [J]. Journal of Statistical Physics, 2012, 148 : 204 - 232
  • [4] Local semicircle law for Curie-Weiss type ensembles
    Fleermann, Michael
    Kirsch, Werner
    Kriecherbauer, Thomas
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [5] SPECTRAL STATISTICS OF ERDOS-RENYI GRAPHS I: LOCAL SEMICIRCLE LAW
    Erdos, Laszlo
    Knowles, Antti
    Yau, Horng-Tzer
    Yin, Jun
    [J]. ANNALS OF PROBABILITY, 2013, 41 (3B): : 2279 - 2375
  • [6] Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble
    Kholopov, A. A.
    Tikhomirov, A. N.
    Timushev, D. A.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2008, 52 (01) : 171 - 177
  • [7] Local Semicircle Law for Random Regular Graphs
    Bauerschmidt, Roland
    Knowles, Antti
    Yau, Horng-Tzer
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (10) : 1898 - 1960
  • [8] Local semicircle law with imprimitive variance matrix
    Ajanki, Oskari
    Erdos, Laszlo
    Krueger, Torben
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 9
  • [9] Semicircle Law for Generalized Curie–Weiss Matrix Ensembles at Subcritical Temperature
    Werner Kirsch
    Thomas Kriecherbauer
    [J]. Journal of Theoretical Probability, 2018, 31 : 2446 - 2458
  • [10] Local Semicircle Law Under Fourth Moment Condition
    F. Götze
    A. Naumov
    A. Tikhomirov
    [J]. Journal of Theoretical Probability, 2020, 33 : 1327 - 1362