Monotonicity Inference for Higher-Order Formulas

被引:0
|
作者
Jasmin Christian Blanchette
Alexander Krauss
机构
[1] Technische Universität München,Institut für Informatik
来源
关键词
Higher-order logic; Model finding; Isabelle/HOL;
D O I
暂无
中图分类号
学科分类号
摘要
Formulas are often monotonic in the sense that satisfiability for a given domain of discourse entails satisfiability for all larger domains. Monotonicity is undecidable in general, but we devised three calculi that infer it in many cases for higher-order logic. The third calculus has been implemented in Isabelle’s model finder Nitpick, where it is used both to prune the search space and to soundly interpret infinite types with finite sets, leading to dramatic speed and precision improvements.
引用
收藏
页码:369 / 398
页数:29
相关论文
共 50 条
  • [1] Monotonicity Inference for Higher-Order Formulas
    Blanchette, Jasmin Christian
    Krauss, Alexander
    [J]. AUTOMATED REASONING, 2010, 6173 : 91 - 106
  • [2] Monotonicity Inference for Higher-Order Formulas
    Blanchette, Jasmin Christian
    Krauss, Alexander
    [J]. JOURNAL OF AUTOMATED REASONING, 2011, 47 (04) : 369 - 398
  • [3] ON THE MONOTONICITY OF THE HIGHER-ORDER SCHULZ METHOD
    PETKOVIC, LD
    PETKOVIC, MS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (09): : 455 - 456
  • [4] APPLICATION OF HIGHER-ORDER BIFURCATION FORMULAS
    COLANTONIO, MC
    PADIN, M
    DESAGES, A
    ROMAGNOLI, JA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (06) : 746 - 749
  • [5] PROPERTIES OF HIGHER-ORDER TROTTER FORMULAS
    JANKE, W
    SAUER, T
    [J]. PHYSICS LETTERS A, 1992, 165 (03) : 199 - 205
  • [6] Accurate higher-order likelihood inference on
    Cortese, Giuliana
    Ventura, Laura
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1035 - 1059
  • [7] Characterization of higher-order monotonicity via integral inequalities
    Bessenyei, Mihaly
    Pales, Zsolt
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 723 - 736
  • [8] ON A MONOTONICITY PROPERTY FOR HIGHER-ORDER DIFFERENTIAL-EQUATIONS
    KALAS, J
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8B (02): : 391 - 403
  • [9] REDUCTION FORMULAS FOR HIGHER-ORDER INDEXES AND ANOMALY
    FUJIMOTO, Y
    GRIGJANIS, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (11) : 3141 - 3147
  • [10] Higher-order fractional Green and Gauss formulas
    Cheng, Jinfa
    Dai, Weizhong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 157 - 171