Monotonicity Inference for Higher-Order Formulas

被引:0
|
作者
Blanchette, Jasmin Christian [1 ]
Krauss, Alexander [1 ]
机构
[1] Tech Univ Munich, Inst Informat, D-8000 Munich, Germany
来源
AUTOMATED REASONING | 2010年 / 6173卷
关键词
HOL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Formulas are often monotonic in the sense that if the formula is satisfiable for given domains of discourse, it is also satisfiable for all larger domains. Monotonicity is undecidable in general, but we devised two calculi that infer it in many cases for higher-order logic. The stronger calculus has been implemented in Isabelle's model finder Nitpick, where it is used to prune the search space, leading to dramatic speed improvements for formulas involving many atomic types.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [1] Monotonicity Inference for Higher-Order Formulas
    Jasmin Christian Blanchette
    Alexander Krauss
    [J]. Journal of Automated Reasoning, 2011, 47 : 369 - 398
  • [2] Monotonicity Inference for Higher-Order Formulas
    Blanchette, Jasmin Christian
    Krauss, Alexander
    [J]. JOURNAL OF AUTOMATED REASONING, 2011, 47 (04) : 369 - 398
  • [3] ON THE MONOTONICITY OF THE HIGHER-ORDER SCHULZ METHOD
    PETKOVIC, LD
    PETKOVIC, MS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (09): : 455 - 456
  • [4] APPLICATION OF HIGHER-ORDER BIFURCATION FORMULAS
    COLANTONIO, MC
    PADIN, M
    DESAGES, A
    ROMAGNOLI, JA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (06) : 746 - 749
  • [5] PROPERTIES OF HIGHER-ORDER TROTTER FORMULAS
    JANKE, W
    SAUER, T
    [J]. PHYSICS LETTERS A, 1992, 165 (03) : 199 - 205
  • [6] Accurate higher-order likelihood inference on
    Cortese, Giuliana
    Ventura, Laura
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1035 - 1059
  • [7] Characterization of higher-order monotonicity via integral inequalities
    Bessenyei, Mihaly
    Pales, Zsolt
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 723 - 736
  • [8] ON A MONOTONICITY PROPERTY FOR HIGHER-ORDER DIFFERENTIAL-EQUATIONS
    KALAS, J
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8B (02): : 391 - 403
  • [9] REDUCTION FORMULAS FOR HIGHER-ORDER INDEXES AND ANOMALY
    FUJIMOTO, Y
    GRIGJANIS, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (11) : 3141 - 3147
  • [10] Higher-order fractional Green and Gauss formulas
    Cheng, Jinfa
    Dai, Weizhong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 157 - 171