General electrodynamics of non-abelian vector bosons of SU(2)

被引:0
|
作者
M T Teli
机构
[1] Mahatma Gandhi Mission’s Jawaharlal Nehru Engineering College,Department of Applied Sciences
[2] Cidco,undefined
来源
Pramana | 2019年 / 93卷
关键词
Non-abelian bosodynamics; Noether’s theorem; nuclear structure; eigenvalue problem; bradyon vector bosons; tachyon vector bosons; 11.10.–z; 11.15.–q; 11.15.Ex; 11.30.–j;
D O I
暂无
中图分类号
学科分类号
摘要
Generalised Dirac–Maxwell equations (GDM) are extended to describe non-abelian vector bosons by forming SU(2) multiplet. Noether’s conserved current is investigated by forming suitable Lagrangian for the theory. General electrodynamics (GED) equations are obtained as Euler–Lagrange equations. Higgs mechanism leads to eigenvalue problem with masses of the bosons as eigenvalues. The sources of the fields have only improper conservation. Analogous to abelian vector bosons, non-abelian vector bosons also are seen to have nuclear structure with massive nucleus. There occur two types of SU(2) sheets, each of three non-abelian vector bosons: one group contains one bradyon and two tachyon vector bosons, whereas the other group contains one tachyon and two bradyon vector bosons. Physical Z and W bosons are formed from the eigenvectors of U(1) and SU(2). The Z and W bosons do not have the same coupling strengths in SU(2).
引用
收藏
相关论文
共 50 条
  • [31] Empirical evidence for non-Abelian electrodynamics and theoretical development
    Anon
    [J]. Journal of New Energy, 1999, 4 (03): : 130 - 141
  • [32] Empirical evidence for non-Abelian electrodynamics and theoretical development
    Anastasovski, P.K.
    Bearden, T.E.
    Ciubotariu, C.
    Coffey, W.T.
    Crowell, L.B.
    Evans, G.J.
    Evans, M.W.
    Flower, R.
    Jeffers, S.
    Labounsky, A.
    Lehnert, B.
    Meszaros, M.
    Molnar, P.R.
    Vigier, J.-P.
    Roy, S.
    [J]. 2001, Fondation Louis de Broglie (26): : 653 - 672
  • [33] NON-ABELIAN ANOMALY AND VECTOR-MESONS AS DYNAMICAL GAUGE BOSONS OF HIDDEN LOCAL SYMMETRIES
    FUJIWARA, T
    KUGO, T
    TERAO, H
    UEHARA, S
    YAMAWAKI, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (04): : 926 - 941
  • [34] Generating ζ with non-Abelian Vector Fields
    Karciauskas, Mindaugas
    [J]. TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011, 2012, 1458 : 443 - 446
  • [35] A massive non-abelian vector model
    Chishtie, F. A.
    McKeon, D. G. C.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2013, 91 (02) : 164 - 167
  • [36] ELECTRODYNAMICS OF VECTOR BOSONS
    CARACENA, F
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (04): : 685 - &
  • [37] STRUCTURE AND SPECTRUM OF THE HAMILTONIAN OF CONSTANT SU(2) NON-ABELIAN FIELDS
    VANAGAS, VV
    KATKEVICIUS, OD
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1987, 46 (04): : 750 - 755
  • [38] NON-ABELIAN SU (2) NECK WITH A 7-DIMENSIONAL INSERTION
    DZHUNUSHALIEV, VD
    [J]. JETP LETTERS, 1991, 53 (11) : 547 - 550
  • [39] Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits
    Mezzacapo, A.
    Rico, E.
    Sabin, C.
    Egusquiza, I. L.
    Lamata, L.
    Solano, E.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (24)
  • [40] Non-Abelian Landau-Ginzburg theory of ferromagnetic superconductivity and mixing between U(1) and SU(2) gauge bosons
    Cho, Y. M.
    Cho, Franklin H.
    [J]. ANNALS OF PHYSICS, 2024, 460