Finite basis problem for involution monoids of unitriangular boolean matrices

被引:0
|
作者
Wen Ting Zhang
Yan Feng Luo
Nan Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Algebra universalis | 2020年 / 81卷
关键词
-trivial semigroups; Involution; Boolean matrix; Finite basis problem; Variety; 03C05; 20M07;
D O I
暂无
中图分类号
学科分类号
摘要
Let (BUn,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_n, \,^*\,)$$\end{document} be the involution monoid of all Boolean upper triangular n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrices with 1s on the main diagonal under the ordinary matrix multiplication and the skew transposition. The involution monoid (BU2,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_2, \,^*\,)$$\end{document} is easily seen to be finitely based. In this paper, we shown that (BUn,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_n, \,^*\,)$$\end{document} is non-finitely based for each n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 3$$\end{document}, which answers an open question posed by Auinger et al. Therefore involution monoid (BUn,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_n, \,^*\,)$$\end{document} is finitely based if and only if n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 2$$\end{document}.
引用
收藏
相关论文
共 50 条