Finite basis problem for involution monoids of unitriangular boolean matrices

被引:0
|
作者
Wen Ting Zhang
Yan Feng Luo
Nan Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Algebra universalis | 2020年 / 81卷
关键词
-trivial semigroups; Involution; Boolean matrix; Finite basis problem; Variety; 03C05; 20M07;
D O I
暂无
中图分类号
学科分类号
摘要
Let (BUn,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_n, \,^*\,)$$\end{document} be the involution monoid of all Boolean upper triangular n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrices with 1s on the main diagonal under the ordinary matrix multiplication and the skew transposition. The involution monoid (BU2,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_2, \,^*\,)$$\end{document} is easily seen to be finitely based. In this paper, we shown that (BUn,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_n, \,^*\,)$$\end{document} is non-finitely based for each n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 3$$\end{document}, which answers an open question posed by Auinger et al. Therefore involution monoid (BUn,∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(BU_n, \,^*\,)$$\end{document} is finitely based if and only if n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Finite basis problem for involution monoids of unitriangular boolean matrices
    Zhang, Wen Ting
    Luo, Yan Feng
    Wang, Nan
    ALGEBRA UNIVERSALIS, 2020, 81 (01)
  • [2] On the finite basis problem for the monoids of triangular boolean matrices
    Li, Jian Rong
    Luo, Yan Feng
    ALGEBRA UNIVERSALIS, 2011, 65 (04) : 353 - 362
  • [3] On the finite basis problem for the monoids of triangular boolean matrices
    Jian Rong Li
    Yan Feng Luo
    Algebra universalis, 2011, 65 : 353 - 362
  • [4] Finite basis problem for Lee monoids with involution
    Gao, Meng
    Zhang, Wen-Ting
    Luo, Yan-Feng
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4258 - 4273
  • [5] Finite basis problem for Catalan monoids with involution
    Gao, Meng
    Zhang, Wen Ting
    Luo, Yan Feng
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (06) : 1161 - 1177
  • [6] FINITE BASIS PROBLEM FOR INVOLUTION MONOIDS OF ORDER FIVE
    Han, Bin Bin
    Zhang, Wen Ting
    Luo, Yan Feng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 350 - 364
  • [7] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [8] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [9] The finite basis problem for Kauffman monoids
    K. Auinger
    Yuzhu Chen
    Xun Hu
    Yanfeng Luo
    M. V. Volkov
    Algebra universalis, 2015, 74 : 333 - 350
  • [10] THE FINITE BASIS PROBLEM FOR INVOLUTION SEMIGROUPS OF TRIANGULAR $2\times 2$ MATRICES
    Zhang, Wen Ting
    Luo, Yan Feng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) : 88 - 104