Theory of transcription bursting: stochasticity in the transcription rates

被引:0
|
作者
Rajamanickam Murugan
机构
[1] Indian Institute of Technology Madras,Department of Biotechnology
来源
关键词
Transcription bursting; On–off state flipping; Over-dispersion; Fano factor; mRNA dynamics; Non-Poisson distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Transcription bursting creates variation among the individuals of a given population. Bursting emerges as the consequence of turning on and off the transcription process randomly. There are at least three sub-processes involved in the bursting phenomenon with different timescale regimes viz. flipping across the on–off state channels, microscopic transcription elongation events and the mesoscopic transcription dynamics along with the mRNA recycling. We demonstrate that when the flipping dynamics is coupled with the microscopic elongation events, then the distribution of the resultant transcription rates will be over-dispersed. This in turn reflects as the transcription bursting with over-dispersed non-Poisson type distribution of mRNA numbers. We further show that there exist optimum flipping rates (αC, βC) at which the stationary state Fano factor and variance associated with the mRNA numbers attain maxima. These optimum points are connected via αC=βCβC+γr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha_{C} = \sqrt {\beta_{C} \left( {\beta_{C} + \gamma_{r} } \right)} $$\end{document}. Here α is the rate of flipping from the on-state to the off-state, β is the rate of flipping from the off-state to the on-state and γr is the decay rate of mRNA. When α = β = χ with zero rate in the off-state channel, then there exist optimum flipping rates at which the non-stationary Fano factor and variance attain maxima. Here χC,v≃3kr+/21+kr+t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi_{C,v} \simeq {{3k_{r}^{ + } } \mathord{\left/ {\vphantom {{3k_{r}^{ + } } {2\left( {1 + k_{r}^{ + } t} \right)}}} \right. \kern-0pt} {2\left( {1 + k_{r}^{ + } t} \right)}} $$\end{document} (here kr+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k_{r}^{ + } $$\end{document} is the rate of transcription purely through the on-state elongation channel) is the optimum flipping rate at which the variance of mRNA attains a maximum and χC,κ≃1.72/t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi_{C,\kappa } \simeq {{1.72} \mathord{\left/ {\vphantom {{1.72} t}} \right. \kern-0pt} t} $$\end{document} is the optimum flipping rate at which the Fano factor attains a maximum. Close observation of the transcription mechanism reveals that the RNA polymerase performs several rounds of stall-continue type dynamics before generating a complete mRNA. Based on this observation, we model the transcription event as a stochastic trajectory of the transcription machinery across these on–off state elongation channels. Each mRNA transcript follows different trajectory. The total time taken by a given trajectory is the first passage time (FPT). Inverse of this FPT is the resultant transcription rate associated with the particular mRNA. Therefore, the time required to generate a given mRNA transcript will be a random variable. For a stall-continue type dynamics of RNA polymerase, we show that the overall average transcription rate can be expressed as kr≃h∞+kr+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k_{r} \simeq h_{\infty }^{ + } k_{r}^{ + } $$\end{document} where kr+≃λr+/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k_{r}^{ + } \simeq {{\lambda_{r}^{ + } } \mathord{\left/ {\vphantom {{\lambda_{r}^{ + } } L}} \right. \kern-0pt} L} $$\end{document}, λr+ is the microscopic transcription elongation rate in the on-state channel and L is the length of a complete mRNA transcript and h∞+ = [β/(α + β)] is the stationary state probability of finding the transcription machinery in the on-state channel.
引用
收藏
页码:2140 / 2187
页数:47
相关论文
共 50 条
  • [21] Theory on the dynamic memory in the transcription-factor-mediated transcription activation
    Murugan, R.
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [22] Stochasticity and traffic jams in the transcription of ribosomal RNA: Intriguing role of termination and antitermination
    Klumpp, Stefan
    Hwa, Terence
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (47) : 18159 - 18164
  • [23] Silent transcription intervals and translational bursting lead to diverse phenotypic switching
    Yang, Xiyan
    Luo, Songhao
    Zhang, Zhenquan
    Wang, Zihao
    Zhou, Tianshou
    Zhang, Jiajun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (43) : 26600 - 26608
  • [24] Degree dependence in rates of transcription factor evolution explains the unusual structure of transcription networks
    Stewart, Alexander J.
    Seymour, Robert M.
    Pomiankowski, Andrew
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 276 (1666) : 2493 - 2501
  • [25] Transcription Error Rates in Retrospective Chart Reviews
    Feng, James E.
    Anoushiravani, Afshin A.
    Tesoriero, Paul J.
    Ani, Lidia
    Meftah, Morteza
    Schwarzkopf, Ran
    Leucht, Philipp
    ORTHOPEDICS, 2020, 43 (05) : E404 - E408
  • [26] Multiplex Eukaryotic Transcription (In) activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism
    Rybakova, Katja N.
    Bruggeman, Frank J.
    Tomaszewska, Aleksandra
    Mone, Martijn J.
    Carlberg, Carsten
    Westerhoff, Hans V.
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (04)
  • [27] Stochasticity in the enterococcal sex pheromone response revealed by quantitative analysis of transcription in single cells
    Breuer, Rebecca J.
    Bandyopadhyay, Arpan
    O'Brien, Sofie A.
    Barnes, Aaron M. T.
    Hunter, Ryan C.
    Hu, Wei-Shou
    Dunny, Gary M.
    PLOS GENETICS, 2017, 13 (07):
  • [28] The route to transcription initiation determines the mode of transcriptional bursting in E. coli
    Engl, Christoph
    Jovanovic, Goran
    Brackston, Rowan D.
    Kotta-Loizou, Ioly
    Buck, Martin
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [29] Transcription-coupled changes in genomic region proximities during transcriptional bursting
    Ohishi, Hiroaki
    Shinkai, Soya
    Owada, Hitoshi
    Fujii, Takeru
    Hosoda, Kazufumi
    Onami, Shuichi
    Yamamoto, Takashi
    Ohkawa, Yasuyuki
    Ochiai, Hiroshi
    SCIENCE ADVANCES, 2024, 10 (49):
  • [30] The route to transcription initiation determines the mode of transcriptional bursting in E. coli
    Christoph Engl
    Goran Jovanovic
    Rowan D. Brackston
    Ioly Kotta-Loizou
    Martin Buck
    Nature Communications, 11