Theory of transcription bursting: stochasticity in the transcription rates

被引:0
|
作者
Rajamanickam Murugan
机构
[1] Indian Institute of Technology Madras,Department of Biotechnology
来源
关键词
Transcription bursting; On–off state flipping; Over-dispersion; Fano factor; mRNA dynamics; Non-Poisson distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Transcription bursting creates variation among the individuals of a given population. Bursting emerges as the consequence of turning on and off the transcription process randomly. There are at least three sub-processes involved in the bursting phenomenon with different timescale regimes viz. flipping across the on–off state channels, microscopic transcription elongation events and the mesoscopic transcription dynamics along with the mRNA recycling. We demonstrate that when the flipping dynamics is coupled with the microscopic elongation events, then the distribution of the resultant transcription rates will be over-dispersed. This in turn reflects as the transcription bursting with over-dispersed non-Poisson type distribution of mRNA numbers. We further show that there exist optimum flipping rates (αC, βC) at which the stationary state Fano factor and variance associated with the mRNA numbers attain maxima. These optimum points are connected via αC=βCβC+γr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha_{C} = \sqrt {\beta_{C} \left( {\beta_{C} + \gamma_{r} } \right)} $$\end{document}. Here α is the rate of flipping from the on-state to the off-state, β is the rate of flipping from the off-state to the on-state and γr is the decay rate of mRNA. When α = β = χ with zero rate in the off-state channel, then there exist optimum flipping rates at which the non-stationary Fano factor and variance attain maxima. Here χC,v≃3kr+/21+kr+t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi_{C,v} \simeq {{3k_{r}^{ + } } \mathord{\left/ {\vphantom {{3k_{r}^{ + } } {2\left( {1 + k_{r}^{ + } t} \right)}}} \right. \kern-0pt} {2\left( {1 + k_{r}^{ + } t} \right)}} $$\end{document} (here kr+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k_{r}^{ + } $$\end{document} is the rate of transcription purely through the on-state elongation channel) is the optimum flipping rate at which the variance of mRNA attains a maximum and χC,κ≃1.72/t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi_{C,\kappa } \simeq {{1.72} \mathord{\left/ {\vphantom {{1.72} t}} \right. \kern-0pt} t} $$\end{document} is the optimum flipping rate at which the Fano factor attains a maximum. Close observation of the transcription mechanism reveals that the RNA polymerase performs several rounds of stall-continue type dynamics before generating a complete mRNA. Based on this observation, we model the transcription event as a stochastic trajectory of the transcription machinery across these on–off state elongation channels. Each mRNA transcript follows different trajectory. The total time taken by a given trajectory is the first passage time (FPT). Inverse of this FPT is the resultant transcription rate associated with the particular mRNA. Therefore, the time required to generate a given mRNA transcript will be a random variable. For a stall-continue type dynamics of RNA polymerase, we show that the overall average transcription rate can be expressed as kr≃h∞+kr+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k_{r} \simeq h_{\infty }^{ + } k_{r}^{ + } $$\end{document} where kr+≃λr+/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k_{r}^{ + } \simeq {{\lambda_{r}^{ + } } \mathord{\left/ {\vphantom {{\lambda_{r}^{ + } } L}} \right. \kern-0pt} L} $$\end{document}, λr+ is the microscopic transcription elongation rate in the on-state channel and L is the length of a complete mRNA transcript and h∞+ = [β/(α + β)] is the stationary state probability of finding the transcription machinery in the on-state channel.
引用
收藏
页码:2140 / 2187
页数:47
相关论文
共 50 条
  • [1] Theory of transcription bursting: stochasticity in the transcription rates
    Murugan, Rajamanickam
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (09) : 2140 - 2187
  • [2] Gene transcription in bursting: a unified mode for realizing accuracy and stochasticity
    Wang, Yaolai
    Ni, Tengfei
    Wang, Wei
    Liu, Feng
    BIOLOGICAL REVIEWS, 2019, 94 (01) : 248 - 258
  • [3] TRANSCRIPTION Unwinding transcriptional bursting
    Lokody, Isabel
    NATURE REVIEWS GENETICS, 2014, 15 (09) : 574 - 574
  • [4] Transcription Activation via Transcriptional Bursting
    Hensel, Zach
    Feng, Haidong
    Han, Bo
    Hatem, Christine
    Liu, Xuefang
    Wang, Jin
    Xiao, Jie
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 167 - 167
  • [5] Transcription Stochasticity of Complex Gene Regulation Models
    Schwabe, Anne
    Rybakova, Katja N.
    Bruggeman, Frank J.
    BIOPHYSICAL JOURNAL, 2012, 103 (06) : 1152 - 1161
  • [6] Enhancer and promoter coordination of transcription bursting and heterogeneity
    Chapus, F.
    Day, C.
    Rodriguez, J.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 1006 - 1006
  • [7] Transcription bursting and epigenetic plasticity: an updated view
    William F. Beckman
    Miguel Ángel Lermo Jiménez
    Pernette J. Verschure
    Epigenetics Communications, 1 (1):
  • [8] Time's up: Bursting out of Transcription
    Ford, Ethan
    Thanos, Dimitris
    CELL, 2009, 138 (03) : 430 - 432
  • [9] Transcription in Living Cells: Molecular Mechanisms of Bursting
    Rodriguez, Joseph
    Larson, Daniel R.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 89, 2020, 89 : 189 - 212
  • [10] Stochastic transcription initiation: Time dependent transcription rates
    Murugan, R.
    BIOPHYSICAL CHEMISTRY, 2006, 121 (01) : 51 - 56