Lifting low-dimensional local systems

被引:0
|
作者
Charles De Clercq
Mathieu Florence
机构
[1] Université Sorbonne Paris Nord,Equipe Topologie Algébrique, Laboratoire Analyse, Géométrie et Applications
[2] Sorbonne Université,Equipe de Topologie et Géométrie Algébriques, Institut de Mathématiques de Jussieu
来源
Mathematische Zeitschrift | 2022年 / 300卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a field of characteristic p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}. Denote by Wr(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {W}_r(k)$$\end{document} the ring of truntacted Witt vectors of length r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ge 2$$\end{document}, built out of k. In this text, we consider the following question, depending on a given profinite group G. Q(G): Does every (continuous) representation G⟶GLd(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\longrightarrow \mathrm {GL}_d(k)$$\end{document} lift to a representation G⟶GLd(Wr(k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\longrightarrow \mathrm {GL}_d(\mathbf {W}_r(k))$$\end{document}? We work in the class of cyclotomic pairs (Definition 4.3), first introduced in De Clercq and Florence (https://arxiv.org/abs/2009.11130, 2018) under the name “smooth profinite groups”. Using Grothendieck-Hilbert’ theorem 90, we show that the algebraic fundamental groups of the following schemes are cyclotomic: spectra of semilocal rings over Z[1p]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}[\frac{1}{p}]$$\end{document}, smooth curves over algebraically closed fields, and affine schemes over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p$$\end{document}. In particular, absolute Galois groups of fields fit into this class. We then give a positive partial answer to Q(G), for a cyclotomic profinite group G: the answer is positive, when d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}. When d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and r=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=\infty $$\end{document}, we show that any 2-dimensional representation of Gstably lifts to a representation over W(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {W}(k)$$\end{document}: see Theorem 6.1. When p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} and k=F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\mathbb {F}_2$$\end{document}, we prove the same results, up to dimension d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document}. We then give a concrete application to algebraic geometry: we prove that local systems of low dimension lift Zariski-locally (Corollary 6.3).
引用
收藏
页码:125 / 138
页数:13
相关论文
共 50 条
  • [1] Lifting low-dimensional local systems
    De Clercq, Charles
    Florence, Mathieu
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 125 - 138
  • [2] Local spin susceptibilities of low-dimensional electron systems
    Stano, Peter
    Klinovaja, Jelena
    Yacoby, Amir
    Loss, Daniel
    [J]. PHYSICAL REVIEW B, 2013, 88 (04)
  • [3] Low-dimensional systems
    Borovitskaya, Elena
    Shur, Michael S.
    [J]. International Journal of High Speed Electronics and Systems, 2002, 12 (01) : 1 - 14
  • [4] THERMODYNAMICS OF LOW-DIMENSIONAL SYSTEMS
    KOPINGA, K
    [J]. JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1989, 86 (05) : 1023 - 1039
  • [5] Phonons in low-dimensional systems
    Fritsch, J
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (34) : 7611 - 7626
  • [6] Lasing in low-dimensional systems
    Oberli, DY
    [J]. ELECTRON AND PHOTON CONFINEMENT IN SEMICONDUCTOR NANOSTRUCTURES, 2003, 150 : 303 - 325
  • [7] Photoemission in low-dimensional systems
    Grioni, M
    Berger, H
    Garnier, M
    Bommeli, F
    Degiorgi, L
    Schlenker, C
    [J]. PHYSICA SCRIPTA, 1996, T66 : 172 - 176
  • [8] Low-Dimensional Magnetic Systems
    Zivieri, Roberto
    Consolo, Giancarlo
    Martinez, Eduardo
    Akerman, Johan
    [J]. ADVANCES IN CONDENSED MATTER PHYSICS, 2012, 2012
  • [9] Phonons in low-dimensional systems
    Mayer, AP
    Bonart, D
    Strauch, D
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (05) : S395 - S427
  • [10] Novel local density of state mapping technique for low-dimensional systems
    Fujita, D
    Xu, MX
    Onishi, E
    Kitahara, M
    Sagisaka, K
    [J]. JOURNAL OF ELECTRON MICROSCOPY, 2004, 53 (02): : 177 - 185