Lifting low-dimensional local systems

被引:1
|
作者
De Clercq, Charles [1 ]
Florence, Mathieu [2 ]
机构
[1] Univ Sorbonne Paris Nord, Lab Anal Geometrie & Applicat, Equipe Topol Algebr, F-93430 Villetaneuse, France
[2] Sorbonne Univ, Inst Math Jussieu, Equipe Topol & Geometrie Algebr, 4 Pl Jussieu, F-75005 Paris, France
关键词
D O I
10.1007/s00209-021-02763-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field of characteristic p > 0. Denote by W-r(k) the ring of truntacted Witt vectors of length r >= 2, built out of k. In this text, we consider the following question, depending on a given profinite group G. Q(G): Does every (continuous) representation G -> GL(d)(k) lift to a representation G -> GL(d)(W-r(k))? We work in the class of cyclotomic pairs (Definition 4.3), first introduced inDeClercq and Florence (https://arxiv.org/abs/2009.11130, 2018) under the name "smooth profinite groups". Using Grothendieck-Hilbert' theorem 90, we show that the algebraic fundamental groups of the following schemes are cyclotomic: spectra of semilocal rings over Z[1/p], smooth curves over algebraically closed fields, and affine schemes over F-p. In particular, absolute Galois groups of fields fit into this class. We then give a positive partial answer to Q(G), for a cyclotomic profinite group G: the answer is positive, when d = 2 and r = 2. When d = 2 and r = infinity, we show that any 2-dimensional representation of G stably lifts to a representation over W(k): see Theorem 6.1. When p = 2 and k = F-2, we prove the same results, up to dimension d = 4. We then give a concrete application to algebraic geometry: we prove that local systems of low dimension lift Zariski-locally (Corollary 6.3).
引用
收藏
页码:125 / 138
页数:14
相关论文
共 50 条
  • [1] Lifting low-dimensional local systems
    Charles De Clercq
    Mathieu Florence
    [J]. Mathematische Zeitschrift, 2022, 300 : 125 - 138
  • [2] Local spin susceptibilities of low-dimensional electron systems
    Stano, Peter
    Klinovaja, Jelena
    Yacoby, Amir
    Loss, Daniel
    [J]. PHYSICAL REVIEW B, 2013, 88 (04)
  • [3] Low-dimensional systems
    Borovitskaya, Elena
    Shur, Michael S.
    [J]. International Journal of High Speed Electronics and Systems, 2002, 12 (01) : 1 - 14
  • [4] THERMODYNAMICS OF LOW-DIMENSIONAL SYSTEMS
    KOPINGA, K
    [J]. JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1989, 86 (05) : 1023 - 1039
  • [5] Phonons in low-dimensional systems
    Fritsch, J
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (34) : 7611 - 7626
  • [6] Lasing in low-dimensional systems
    Oberli, DY
    [J]. ELECTRON AND PHOTON CONFINEMENT IN SEMICONDUCTOR NANOSTRUCTURES, 2003, 150 : 303 - 325
  • [7] Photoemission in low-dimensional systems
    Grioni, M
    Berger, H
    Garnier, M
    Bommeli, F
    Degiorgi, L
    Schlenker, C
    [J]. PHYSICA SCRIPTA, 1996, T66 : 172 - 176
  • [8] Low-Dimensional Magnetic Systems
    Zivieri, Roberto
    Consolo, Giancarlo
    Martinez, Eduardo
    Akerman, Johan
    [J]. ADVANCES IN CONDENSED MATTER PHYSICS, 2012, 2012
  • [9] Phonons in low-dimensional systems
    Mayer, AP
    Bonart, D
    Strauch, D
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (05) : S395 - S427
  • [10] Novel local density of state mapping technique for low-dimensional systems
    Fujita, D
    Xu, MX
    Onishi, E
    Kitahara, M
    Sagisaka, K
    [J]. JOURNAL OF ELECTRON MICROSCOPY, 2004, 53 (02): : 177 - 185