Tropical Carathéodory with Matroids

被引:0
|
作者
Georg Loho
Raman Sanyal
机构
[1] University of Twente,Faculty of Electrical Engineering, Mathematics, and Computer Science
[2] Goethe-Universität Frankfurt,FB 12
来源
关键词
Colorful Carathéodory Theorem; Matroid Carathéodory Theorem; Tropical convex geometry; 52A35; 05B35; 14T05;
D O I
暂无
中图分类号
学科分类号
摘要
Bárány’s colorful generalization of Carathéodory’s Theorem combines geometrical and combinatorial constraints. Kalai–Meshulam (2005) and Holmsen (2016) generalized Bárány’s theorem by replacing color classes with matroid constraints. In this note, we obtain corresponding results in tropical convexity, generalizing the Tropical Colorful Carathéodory Theorem of Gaubert–Meunier (2010). Our proof is inspired by geometric arguments and is reminiscent of matroid intersection. Moreover, we show that the topological approach fails in this setting. We also discuss tropical colorful linear programming and show that it is NP-complete. We end with thoughts and questions on generalizations to polymatroids, anti-matroids as well as examples and matroid simplicial depth.
引用
收藏
页码:139 / 155
页数:16
相关论文
共 50 条
  • [1] Hyperbolic Carathéodory conjecture
    Ovsienko V.
    Tabachnikov S.
    Proceedings of the Steklov Institute of Mathematics, 2007, 258 (1) : 178 - 193
  • [2] Conditions for Carathéodory Functions
    Nak Eun Cho
    In Hwa Kim
    Journal of Inequalities and Applications, 2009
  • [3] An Effective Carathéodory Theorem
    Timothy H. McNicholl
    Theory of Computing Systems, 2012, 50 : 579 - 588
  • [4] Certain Characterizations of Carathéodory Domains
    Oleksiy Dovgoshey
    Computational Methods and Function Theory, 2006, 5 (2) : 489 - 503
  • [5] Carathéodory’s Theorem in Depth
    Ruy Fabila-Monroy
    Clemens Huemer
    Discrete & Computational Geometry, 2017, 58 : 51 - 66
  • [6] Nonnegative Polynomials and Their Carath,odory Number
    Naldi, Simone
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (03) : 559 - 568
  • [7] Constantin Carathéodory and the axiomatic thermodynamics
    Lionello Pogliani
    Mario N. Berberan-Santos
    Journal of Mathematical Chemistry, 2000, 28 : 313 - 324
  • [8] Carathéodory Convergence and Harmonic Measure
    Ilia Binder
    Cristobal Rojas
    Michael Yampolsky
    Potential Analysis, 2019, 51 : 499 - 509
  • [9] On the Carathéodory Number for Strong Convexity
    Vuong Bui
    Roman Karasev
    Discrete & Computational Geometry, 2021, 65 : 680 - 692
  • [10] Schur Parameters and the Carathéodory Class
    Ming Li
    Toshiyuki Sugawa
    Results in Mathematics, 2019, 74