Hyperbolic Carathéodory conjecture

被引:0
|
作者
Ovsienko V. [1 ]
Tabachnikov S. [2 ]
机构
[1] Institut Camille Jordan, Université Claude Bernard Lyon 1, Villeurbanne Cedex 69622
[2] Department of Mathematics, Pennsylvania State University, University Park
基金
美国国家科学基金会;
关键词
Normal Form; STEKLOV Institute; Quadratic Point; Hyperbolic Surface; Umbilic Point;
D O I
10.1134/S0081543807030133
中图分类号
学科分类号
摘要
A quadratic point on a surface in ℝP3 is a point at which the surface can be approximated by a quadric abnormally well (up to order 3). We conjecture that the least number of quadratic points on a generic compact nondegenerate hyperbolic surface is 8; the relation between this and the classic Carathéodory conjecture is similar to the relation between the six-vertex and the four-vertex theorems on plane curves. Examples of quartic perturbations of the standard hyperboloid confirm our conjecture. Our main result is a linearization and reformulation of the problem in the framework of the 2-dimensional Sturm theory; we also define a signature of a quadratic point and calculate local normal forms recovering and generalizing the Tresse-Wilczynski theorem. © 2007 Pleiades Publishing, Ltd.
引用
收藏
页码:178 / 193
页数:15
相关论文
共 50 条
  • [1] Conditions for Carathéodory Functions
    Nak Eun Cho
    In Hwa Kim
    Journal of Inequalities and Applications, 2009
  • [2] Tropical Carathéodory with Matroids
    Georg Loho
    Raman Sanyal
    Discrete & Computational Geometry, 2023, 69 : 139 - 155
  • [3] An Effective Carathéodory Theorem
    Timothy H. McNicholl
    Theory of Computing Systems, 2012, 50 : 579 - 588
  • [4] Certain Characterizations of Carathéodory Domains
    Oleksiy Dovgoshey
    Computational Methods and Function Theory, 2006, 5 (2) : 489 - 503
  • [5] Carathéodory’s Theorem in Depth
    Ruy Fabila-Monroy
    Clemens Huemer
    Discrete & Computational Geometry, 2017, 58 : 51 - 66
  • [6] Nonnegative Polynomials and Their Carath,odory Number
    Naldi, Simone
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (03) : 559 - 568
  • [7] Constantin Carathéodory and the axiomatic thermodynamics
    Lionello Pogliani
    Mario N. Berberan-Santos
    Journal of Mathematical Chemistry, 2000, 28 : 313 - 324
  • [8] Carathéodory Convergence and Harmonic Measure
    Ilia Binder
    Cristobal Rojas
    Michael Yampolsky
    Potential Analysis, 2019, 51 : 499 - 509
  • [9] On the Carathéodory Number for Strong Convexity
    Vuong Bui
    Roman Karasev
    Discrete & Computational Geometry, 2021, 65 : 680 - 692
  • [10] Schur Parameters and the Carathéodory Class
    Ming Li
    Toshiyuki Sugawa
    Results in Mathematics, 2019, 74