Cayley graphs of groupoids and generalized fat-trees

被引:0
|
作者
Bahman Khosravi
机构
[1] Qom University of Technology,Department of Mathematics
关键词
Generalized fat-trees; Cayley graphs of groupoids; Primary: 05C25; Secondary: 94C15; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Recall that for a graph which is a Cayley graph of some group, using the group theoretical structure of the graph we can use algebraic methods for studying the network and its properties. As the main result of this note, we investigate a similar result for asymmetric multigraphs and graphs. Specially, for a fat-tree (tree) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document}, we present an algebraic structure on F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} induced by a Cayley multigraph of a power-associative groupoid SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_{\mathcal {F}}$$\end{document}.
引用
收藏
页码:1125 / 1131
页数:6
相关论文
共 50 条