Effect of Intermetallic Compounds on the Microstructure, Mechanical Properties, and Tribological Behaviors of Pure Aluminum by Adding High-Entropy Alloy

被引:0
|
作者
Qinglin Li
Zhaobo Qiao
Xuepeng Bao
Chenglong Fan
Yefeng Lan
JiQiang Ma
机构
[1] Lanzhou University of Technology,State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science and Engineering
[2] Jiuquan Iron and Steel (Group) Co. Ltd,undefined
关键词
aluminum matrix composites; high-entropy alloy; intermetallic compounds; mechanical properties; tribological properties;
D O I
暂无
中图分类号
学科分类号
摘要
A novel aluminum matrix composites (AMCs) reinforced by multiphase intermetallic compounds were fabricated through a conventional casting approach. The microstructure, compression properties and tribological behavior of the AMCs were detailed studied by the scanning electron microscope (SEM), x-ray diffraction (XRD), and electron probe microanalysis (EPMA). The results demonstrated that the fraction of precipitated multiphase intermetallic compounds gradually increased with the increase of high-entropy alloy (HEA) adding content, and the grain size of α-Al obviously was reduced. The irregular multiphase intermetallic compounds, such as Al70Cr20Ni10 and AlTiCrSi, are distributed in the Al matrix. However, the Al2Cu and Al7Cu4Ni distributed in inter-dendrites of α-Al. In addition, the compression strength of AMCs reinforced by 20.0 wt.% HEA addition was significantly enhanced to 530 MPa due to the precipitation of multiphase intermetallic compounds. Meanwhile, its compression strain was higher than 25%. Compared with pure Al, the microhardness of AMCs was extremely increased to 160 HV when the addition content of HEA was up to 20.0 wt.%. When the addition amount of HEA reached 10.0 wt.%, the COF of the ACMs was decreased by 51.6% from 0.766 to 0.371. When the HEA content was up to 20.0 wt.%, the wear rate reached the minimum of 4.87 × 10−5 mm3/N·m, which was reduced by 31.9% compared with pure Al. Furthermore, the strengthening effect and wear mechanism of AMCs reinforced by HEA addition was also discussed.
引用
收藏
页码:6697 / 6710
页数:13
相关论文
共 50 条
  • [21] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Mina Zhang
    Xianglin Zhou
    Jinghao Li
    Journal of Materials Engineering and Performance, 2017, 26 : 3657 - 3665
  • [22] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Ali Shabani
    Mohammad Reza Toroghinejad
    Ali Shafyei
    Roland E. Logé
    Journal of Materials Engineering and Performance, 2019, 28 : 2388 - 2398
  • [23] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270
  • [24] Microstructure and mechanical properties of FeCoCrNiNbX high-entropy alloy coatings
    Fang, Qihong
    Chen, Yang
    Li, Jia
    Liu, Yanbin
    Liu, Yong
    PHYSICA B-CONDENSED MATTER, 2018, 550 : 112 - 116
  • [25] Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy
    Guo, N. N.
    Wang, L.
    Luo, L. S.
    Li, X. Z.
    Su, Y. Q.
    Guo, J. J.
    Fu, H. Z.
    MATERIALS & DESIGN, 2015, 81 : 87 - 94
  • [26] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Zhang, Mina
    Zhou, Xianglin
    Li, Jinghao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3657 - 3665
  • [27] Microstructure and mechanical properties of CoCrFeNiMo high-entropy alloy coatings
    Qiu, Xingwu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (03): : 5127 - 5133
  • [28] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF REFRACTORY HIGH-ENTROPY ALLOY HfMoNbTiCr
    Yi, Jiaojiao
    Wang, Lu
    Xu, Mingqin
    Yang, Lin
    MATERIALI IN TEHNOLOGIJE, 2021, 55 (02): : 305 - 310
  • [29] Microstructure and tribological behaviors of FeCoCrNiMoSix high-entropy alloy coatings prepared by laser cladding
    Yang, Yucheng
    Ren, Yaojia
    Tian, Yanwen
    Li, Kaiyang
    Bai, Lichun
    Huang, Qianli
    Shan, Quan
    Tian, Yingtao
    Wu, Hong
    SURFACE & COATINGS TECHNOLOGY, 2022, 432
  • [30] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Bernd Gludovatz
    Easo P. George
    Robert O. Ritchie
    JOM, 2015, 67 : 2262 - 2270