A novel aluminum matrix composites (AMCs) reinforced by multiphase intermetallic compounds were fabricated through a conventional casting approach. The microstructure, compression properties and tribological behavior of the AMCs were detailed studied by the scanning electron microscope (SEM), x-ray diffraction (XRD), and electron probe microanalysis (EPMA). The results demonstrated that the fraction of precipitated multiphase intermetallic compounds gradually increased with the increase of high-entropy alloy (HEA) adding content, and the grain size of α-Al obviously was reduced. The irregular multiphase intermetallic compounds, such as Al70Cr20Ni10 and AlTiCrSi, are distributed in the Al matrix. However, the Al2Cu and Al7Cu4Ni distributed in inter-dendrites of α-Al. In addition, the compression strength of AMCs reinforced by 20.0 wt.% HEA addition was significantly enhanced to 530 MPa due to the precipitation of multiphase intermetallic compounds. Meanwhile, its compression strain was higher than 25%. Compared with pure Al, the microhardness of AMCs was extremely increased to 160 HV when the addition content of HEA was up to 20.0 wt.%. When the addition amount of HEA reached 10.0 wt.%, the COF of the ACMs was decreased by 51.6% from 0.766 to 0.371. When the HEA content was up to 20.0 wt.%, the wear rate reached the minimum of 4.87 × 10−5 mm3/N·m, which was reduced by 31.9% compared with pure Al. Furthermore, the strengthening effect and wear mechanism of AMCs reinforced by HEA addition was also discussed.