A Computably Enumerable Partial Ordering Without Computably Enumerable Maximal Chains and Antichains

被引:0
|
作者
A. S. Morozov
机构
[1] Sobolev Institute of Mathematics Novosibirsk State University,
来源
关键词
computable order; computably enumerable order; chain; antichain;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a computably enumerable partial ordering having neither computably enumerable maximal chains nor computably enumerable maximal antichains.
引用
收藏
页码:463 / 469
页数:6
相关论文
共 50 条
  • [21] On the filter of computably enumerable supersets of an r-maximal set
    Steffen Lempp
    André Nies
    D. Reed Solomon
    Archive for Mathematical Logic, 2001, 40 : 415 - 423
  • [22] Computably Rigid Models with Enumerable Submodels
    A. N. Buzykaeva
    Siberian Mathematical Journal, 2002, 43 : 1023 - 1026
  • [23] PRIME MODELS OF COMPUTABLY ENUMERABLE DEGREE
    Epstein, Rachel
    JOURNAL OF SYMBOLIC LOGIC, 2008, 73 (04) : 1373 - 1388
  • [24] On universal computably enumerable prefix codes
    Calude, Cristian S.
    Staiger, Ludwig
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2009, 19 (01) : 45 - 57
  • [25] On Dark Computably Enumerable Equivalence Relations
    N. A. Bazhenov
    B. S. Kalmurzaev
    Siberian Mathematical Journal, 2018, 59 : 22 - 30
  • [26] The Structure of Computably Enumerable Preorder Relations
    Badaev, S. A.
    Bazhenov, N. A.
    Kalmurzaev, B. S.
    ALGEBRA AND LOGIC, 2020, 59 (03) : 201 - 215
  • [27] Decomposition and infima in the computably enumerable degrees
    Downey, RG
    Laforte, GL
    Shore, RA
    JOURNAL OF SYMBOLIC LOGIC, 2003, 68 (02) : 551 - 579
  • [28] Computably rigid models with enumerable submodels
    Buzykaeva, AN
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (06) : 1023 - 1026
  • [29] Computably enumerable sets and related issues
    I. A. Lavrov
    Algebra and Logic, 2012, 50 : 494 - 511
  • [30] The Structure of Computably Enumerable Preorder Relations
    S. A. Badaev
    N. A. Bazhenov
    B. S. Kalmurzaev
    Algebra and Logic, 2020, 59 : 201 - 215