S-duality and supersymmetry on curved manifolds

被引:0
|
作者
Guido Festuccia
Maxim Zabzine
机构
[1] Uppsala University,Department of Physics and Astronomy
关键词
Supersymmetric Gauge Theory; Differential and Algebraic Geometry; Duality in Gauge Field Theories; Extended Supersymmetry;
D O I
暂无
中图分类号
学科分类号
摘要
We perform a systematic study of S-duality for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetric non-linear abelian theories on a curved manifold. Localization can be used to compute certain supersymmetric observables in these theories. We point out that localization and S-duality acting as a Legendre transform are not compatible. For these theories S-duality should be interpreted as Fourier transform and we provide some evidence for this. We also suggest the notion of a coholomological prepotential for an abelian theory that gives the same partition function as a given non-abelian supersymmetric theory.
引用
收藏
相关论文
共 50 条
  • [31] Fricke S-duality in CHL models
    Daniel Persson
    Roberto Volpato
    Journal of High Energy Physics, 2015, 2015 : 1 - 55
  • [32] H-dyons and S-duality
    Blum, JD
    NUCLEAR PHYSICS B, 1997, 507 (1-2) : 245 - 258
  • [33] Bubbling surface operators and S-duality
    Gomis, Jaume
    Matsuura, Shunji
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (06):
  • [34] Phenomenological implications of S-duality symmetry
    Das, Ashok
    Maharana, Jnanadeva
    PHYSICS LETTERS B, 2011, 699 (04) : 264 - 270
  • [35] Counting twisted sheaves and S-duality
    Jiang, Yunfeng
    ADVANCES IN MATHEMATICS, 2022, 400
  • [36] S-duality as a β-deformed Fourier transform
    Galakhov, D.
    Mironov, A.
    Morozov, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (08):
  • [37] S-duality in AdS/CFT magnetohydrodynamics
    Hansen, James
    Kraus, Per
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [38] S-Duality and Refined BPS Indices
    Sergei Alexandrov
    Jan Manschot
    Boris Pioline
    Communications in Mathematical Physics, 2020, 380 : 755 - 810
  • [39] S-duality and noncommutative gauge theory
    Gopakumar, R
    Maldacena, J
    Minwalla, S
    Strominger, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (06):
  • [40] Fricke S-duality in CHL models
    Persson, Daniel
    Volpato, Roberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12): : 1 - 55