High-Accuracy Time Discretization of Stochastic Fractional Diffusion Equation

被引:0
|
作者
Xing Liu
机构
[1] Hubei University of Education,School of Mathematics and Economics, Bigdata Modeling and Intelligent Computing research institute
来源
关键词
High-accuracy time discretization; Modifying the semi-implicit Euler scheme; The regularity of nonlinear term; Mean-squared ; -norm; 26A33; 65M60; 65L20; 65C30;
D O I
暂无
中图分类号
学科分类号
摘要
A high-accuracy time discretization is discussed to numerically solve the nonlinear fractional diffusion equation forced by a space-time white noise. The main purpose of this paper is to improve the temporal convergence rate by modifying the semi-implicit Euler scheme. The solution of the equation is only Hölder continuous in time, which is disadvantageous to improve the temporal convergence rate. Firstly, the system is transformed into an equivalent form having better regularity than the original one in time. But the regularity of nonlinear term remains unchanged. Then, combining Lagrange mean value theorem and independent increments of Brownian motion leads to a higher accuracy discretization of nonlinear term which ensures the implementation of the proposed time discretization scheme without loss of convergence rate. Our scheme can improve the convergence rate from min{γ2α,12}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\min \{\frac{\gamma }{2\alpha },\frac{1}{2}\}}$$\end{document} to min{γα,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\min \{\frac{\gamma }{\alpha },1\}}$$\end{document} in the sense of mean-squared L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm. The theoretical error estimates are confirmed by extensive numerical experiments.
引用
收藏
相关论文
共 50 条
  • [1] High-Accuracy Time Discretization of Stochastic Fractional Diffusion Equation
    Liu, Xing
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [2] Partially explicit time discretization for time fractional diffusion equation
    Hu, Jiuhua
    Alikhanov, Anatoly
    Efendiev, Yalchin
    Leung, Wing Tat
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) : 1908 - 1924
  • [3] Partially explicit time discretization for time fractional diffusion equation
    Jiuhua Hu
    Anatoly Alikhanov
    Yalchin Efendiev
    Wing Tat Leung
    Fractional Calculus and Applied Analysis, 2022, 25 : 1908 - 1924
  • [4] High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis
    Aghdam, Y. Esmaeelzade
    Mesgarani, H.
    Moremedi, G. M.
    Khoshkhahtinat, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 217 - 225
  • [5] On the solution of a fractional diffusion integrodifferential equation with Rothe time discretization
    Chaoui, Abderrazek
    Hallaci, Ahmed
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (06) : 643 - 654
  • [6] A new high-accuracy difference method for nonhomogeneous time-fractional Schrodinger equation
    Tian, Zihao
    Cao, Yanhua
    Yang, Xiaozhong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (09) : 1877 - 1895
  • [7] Difference methods for time discretization of spectral fractional stochastic wave equation
    Liu, Xing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [8] High-accuracy finite element method for 2D time fractional diffusion-wave equation on anisotropic meshes
    Zhang, Y. D.
    Zhao, Y. M.
    Wang, F. L.
    Tang, Y. F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 218 - 230
  • [9] High-accuracy discretization methods for solid mechanics
    Tolstykh, AI
    Lipavskii, MV
    Shirobokov, DA
    ARCHIVES OF MECHANICS, 2003, 55 (5-6): : 531 - 553
  • [10] Models with conjugation conditions and high-accuracy methods of their discretization
    I. V. Sergienko
    V. S. Deineka
    Cybernetics and Systems Analysis, 2000, 36 : 83 - 101