Chaos control and function projective synchronization of fractional-order systems through the backstepping method

被引:0
|
作者
S. Das
V. K. Yadav
机构
[1] Indian Institute of Technology (Banaras Hindu University),Department of Mathematical Sciences
来源
关键词
fractional derivative; chaotic T-system; Lorenz system; backstepping method; feedback control method; Lyapunov stability theory; synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.
引用
收藏
页码:1430 / 1439
页数:9
相关论文
共 50 条
  • [1] CHAOS CONTROL AND FUNCTION PROJECTIVE SYNCHRONIZATION OF FRACTIONAL-ORDER SYSTEMS THROUGH THE BACKSTEPPING METHOD
    Das, S.
    Yadav, V. K.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 189 (01) : 1430 - 1439
  • [2] Chaos control and projective synchronization of a fractional-order financial system
    Yang, Maosong
    Dong, Duan
    Ma, Shaojuan
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING ICISCE 2015, 2015, : 651 - 655
  • [3] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [4] Function projective lag synchronization of fractional-order chaotic systems
    Sha, Wang
    Yu Yong-Guang
    Hu, Wang
    Rahmani, Ahmed
    [J]. CHINESE PHYSICS B, 2014, 23 (04)
  • [5] Function projective lag synchronization of fractional-order chaotic systems
    王莎
    于永光
    王虎
    Ahmed Rahmani
    [J]. Chinese Physics B, 2014, 23 (04) : 175 - 181
  • [6] Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems
    Yang, Chunde
    Cai, Hao
    Zhou, Ping
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [7] Dual Function Matrix Projective Synchronization for Fractional-Order Hyperchaotic Systems
    He, Jinman
    Pei, Lijun
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (09):
  • [8] Chaos synchronization of fractional-order differential systems
    Li, CP
    Deng, WH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (07): : 791 - 803
  • [9] Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems
    Ching-Ming Chang
    Hsien-Keng Chen
    [J]. Nonlinear Dynamics, 2010, 62 : 851 - 858
  • [10] Synchronization of Fractional-Order PMSM Chaotic Model Based on Backstepping Control Method
    Xue, Wei
    Zhang, Mei
    Wang, Rui
    [J]. 2017 9TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC 2017), 2017, : 647 - 651